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A NOTE ON SUFFICIENT CONDITIONS FOR NEGATIVE 
EXPONENTIAL POPULATION DENSITIES 
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1. INTRODUCTION 

The main testable prediction of the Mills-Muth model of urban spatial 
structure is that population density declines as distance to the urban center 
increases. The repeated confirmation of this prediction in empirical studies has led 
to a widespread consensus on the validity of the basic urban model, a rare 
achievement in applied economics. The most common specification of the popula- 
tion density function is negative exponential: density D is related to distance to the 
urban center x by the function D = Doe-?”, where y > 0 and D, is population density 
at x = 0.’ Although the negative exponential is a convenient functional form, most 
empirical investigators are aware that it is appropriate only under strong restric- 
tions on the housing production technology, consumer tastes, and the nature of 
commuting costs. Moreover, it is common for researchers to cite Mills (1972) for 
the list of conditions which justify the function’s use [see Kau and Lee (1976) and 
McDonald and Bowman (1976)l. Mills’ conditions are (1) a Cobb-Douglas housing 
production function; (2) commuting costs which are linear in distance; and (3) a 
unitary price elasticity of housing demand. The purpose of this note is to point out 
that in spite of the pedagogic value of Mills’ derivation, the last of these conditions 
is not strictly correct: the appropriate restriction on housing demand is that the 
income compensated price elasticity (not the regular price elasticity) is unitary. 
While this restriction is correctly stated by Muth (1969, Chap. 4), the failure of 
empirical researchers to grasp the difference between the elasticity restrictions 
(and the imprecision of Mills’ version) is no doubt due to the lack of clarity of 
Muth’s argument. In the next section of this note, analysis which is equivalent to 
Muth’s is clearly presented, and the steps leading to Mills’ restriction are 
discussed.’ 

2. ANALYSIS 
The basic urban model assumes that the city is inhabited by individuals with 

uniform incomes and identical tastes over consumption of housing services q and a 
numeraire nonhousing good c. Commuting cost as a function of radial distance to 

*Associate Professor of Economics, University of Illinois at  Urbana-Champaign. 
‘For a recent study estimating such a function, see Glickman and Oguri (1978); for earlier studies, 

21n private correspondence, Mills has indicated that he intentionally sacrificed precision in his 
see Mills (1970) and Muth (1969). 

textbook presentation in order to make the analysis more transparent to uninitiated readers. 
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the urban center .is t ( x ) ,  so that disposable income at  x is y - t ( x ) ,  where y is 
income at  the center. Housing services are produced with capital N and land 1 
according to the function H ( N ,  I ) ,  which is homogeneous of degree one (housing 
services are best viewed as the services derived from floor space, with H the 
production function for floor space). The rental price per unit of housing services 
(per square foot of floor space) is p ,  which depends on x ,  while the rental prices of 
capital and land are i and r respectively, with i constant over x but r free to vary. 

Population density may be computed by noting that the ratio of square feet of 
housing per acre of land to square feet of housing per dwelling equals dwellings per 
acre of land. Thus the ratio (H/ l ) /q  equals dwellings per acre of land and is 
proportional to population density when households are of uniform size. Now the 
appropriateness of the negative exponential density function depends on the form 
of the x-derivative of the natural logarithm of density. If this derivative is constant 
over x ,  then densities will follow the negative exponential function. Letting * 
denote natural logarithm, the derivative of interest is 

1 dD dD* d [ ( H / l ) / q ] *  d ( H / l ) *  dq* 
D dx  dx  dx  dx  dx (1) - -- - - _ _ - _ _ =  - 

The following analysis will indicate when (1) will indeed be constant over x .  
The first step is to calculate d(H/ l )* /dx  making use of the housing producer’s 
first-order conditions. Housing producer profit is p H ( N ,  I )  - iN - rl, and the 
necessary conditions for a maximum are p H ,  = i and p H ,  = r (subscripts denote 
partial derivatives). These equations together imply H2(N,  I ) /H l (N ,  I )  = r/i, and 
the zero-degree homogeneity of H,  and H2 allows this equation to be rewritten as 
H2(N/I ,  l ) / H l ( N / l ,  1) = r/i. The last equation determines the capital-land ratio N/1 
solely as a function of the factor price ratio r/i  (this, of course, is a reflection of the 
fact that constant returns functions are homothetic). Now the dependence of HIE 
on x follows from the dependence of N / l  on r/i and the dependence of r on x. To see 
this, note first that 

d(H/ I )*  1 d H ( N / l ,  1) 
dx  H dx 

~ = -  

- NH,(N/Z, 1) d ( N / I ) *  
- 

H dx  

where the first equality uses H ( N ,  1 ) / 1  = H ( N / l ,  1). Now since H ,  = i / p  and N/1 is a 
function only of r l i ,  (2) may be written 

(3) 
iN d (N/I)* d(r/i)* dr* 

- C ~ N ~ N I  - 5 d(r/ i )*  dx  dx  
_ _ _ _  

where pN = iN/pH is capital’s factor share in housing production and uN1 is the 
elasticity of substitution between capital and land in housing (note that di*/dx = 0 
and d(N/ l )* /d(r / i )*  = [d(N/I )* /d(H2/HJ*1 [d(H2/H1)*/d(r / i )*l  = CTN~ - 1). 
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While ( 3 )  shows how d(H/ l )* /dx  is related to dr*/dx, further analysis 
establishes the connection between d (H/l)*/dx and dp*/dx. Total differentiation 
of the zero-profit identity p H  - iN - rl = 0 (profits are identically zero by 
constant returns) yields 

dl d p  dr  * H  - - 2 + ( p H ,  - i )  - + (pH2 - r )  dx  = Z H  - 
dx dx dx dx 

dr  d N  
(4) = o  

using the producer’s first-order conditions. Rearrangement of (4) yields 

dr* H d p  1 dp* 
dx rl dx p l  dx 

- 

where pL1 = rl/pH is land’s share in housing production. Combining (3) and (5) then 
gives 

Computation of dp*ldx makes use of the first-order conditions for the 
consumer optimization problem. The problem is to maximize the utility function 
u ( c ,  9) subject to c + p q  = y - t ( x )  by choice of c, q, and x. Substitution yields the 
maximand u ( y  - t - p q ,  q )  and the first-order conditions u2/uI = p and 

(7) 
d t  d p  
- + q - = o  
dx dx 

Rearrangement of (7) then yields 

dp* - d t / d x  
dx m 

< O  _ _ _ ~  - 

where m = p q  is expenditure on housing. 
Now in order for the identical urban residents to live voluntarily a t  different 

locations within the city, each individual must be locationally indifferent. That is, 
every location must be optimal, implying that condition (7) must hold at all urban 
values of x. Locational indifference will not obtain, of course, unless utilities are 
uniform across x. It is easy to see, however, that joint satisfaction of (7) and the 
other first-order condition at all x guarantees x-invariant utilities. This follows 
from totally differentiating u(y - t - p q ,  q ) ,  which yields -u,(dt /dx + qdpl  
d x )  + (u2 - pu,)dq/dx, a quantity which equals zero at  all x when (7) and u2/u1 = p 
hold everywhere. Thus, the spatial variation in p implied by (8)  reconciles urban 
residents to differences in commuting costs; the decline of p with x cancels the 
utility-decreasing effect of longer commutes and leaves consumers locationally 
indifferent. 

The final step in deriving dD*/dx is the computation of dq*/dx, a task which 
is immediate in light of the preceding discussion. Since the decline with x in the 
price per square foot of housing keeps consumer utilities constant in the face of 
higher commuting costs, it is clear that the change in q caused by x-induced 
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changes in p and disposable income follows from movement along an income- 
compensated (constant utility) demand curve. Therefore 

(9) 

where 17 is the income-compensated elasticity of demand. Substituting (6) and (9) 
into (1) then yields 

dP dP* - - - - - - - 

where the second equality uses (8). Since all terms in (10) are positive except for 17, 
(10) is unambiguously negative; population density declines with x. The intuition 
for this result is easily stated: lower housing prices at  greater distances lead to 
larger dwellings (dq*/dx = vdp*/dx > 0 )  while lower land rents at  greater distances 
make lower capital-land ratios optimal, and thus lead to fewer square feet of 
housing per acre (d  (H/1)* = pnaNldr*/dx < 0). Together, these effects yield fewer 
dwellings per acre and lower population densities at  greater distances. 

It is now possible to consider the central question of this note: when will (10) 
equal a constant, leading to a negative exponential density function? A sufficient 
condition for this outcome is clearly that each element in (10) is itself independent 
of x . ~  In other words, wl, aNI, 71, dt ldx ,  and rn all should be invariant with x (note 
that the factor shares and elasticities will not in general be independent of x). Now 
if the housing production function is Cobb-Douglas ( H ( N ,  I )  = W1'-"), then uNl = 

1, pN = a, and pi = 1 - a. Moreover, if t (x) = 6 + 6x, then dt /dx  = 6. If in addition 
the income compensated demand elasticity 17 is constant and if movement along 
the income-compensated housing demand curve yields constant expenditures m, 
then the sufficient conditions for constancy of (10) will be met. Clearly, 17 = -1 
leads to satisfaction of both these requirements since a unitary price elasticity 
yields expenditures which are independent of price and thus constant over x. In 
summary, sufficient conditions for the validity of the negative exponential density 
function are (1) a Cobb-Douglas housing production function; (2) commuting costs 
which are linear in distance; and (3) a unitary income-compensated price elasticity 
of housing demand. 

Although Mills (1972) imposes specific functional forms at  the beginning 
rather than at  the end of his derivation, much of his analysis parallels the above. He 
implicitly calculates d (H/ l )* ldx  as in (6) ,  and condition (7) enters importantly in 
his argument. Mills' derivation differs from the above, however, in the computa- 

3Although this is obviously not a necessary condition for the constancy of (101, i t  is very hard to 
imagine a situation in which the elements of (10) are nonconstant over x while (10) itself is 
x-invariant. 
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tion of dq*/dx. First, he assumes that the demand function for housing has the 
constant elasticity form q = AIapS, where I is income and p as before is price. While 
such a demand function is perfectly acceptable, Mills' illegitimate step is to 
substitute gross income y instead of disposable income y - t ( x )  in place of I. The 
resulting demand relationship q = Ayepp ignores the crucial fact that consumer 
purchasing power declines with x .  Calculation of dq*/dx based on this inappro- 
priate relationship yields dq*/dx = (dq*/dp*)( dp*/dx ) = /3dp*/dx. Repeating the 
previous substitutions then gives 

Note in ( 1 1 )  that the uncompensated price elasticity p incorrectly takes the place of 
the compensated elasticity v [compare (10) and ( l l ) ] .  Now since the above demand 
relationship implies m = Ay'p' + @, a unitary price elasticity (/3 = - 1) implies m = 

Ay'. Imposing in addition the assumptions of a Cobb-Douglas production function 
[so that pNcrNI/pl = a/ ( l  - a)]  and linear commuting costs (implying dt/dx = 6), 
substitution in (11) yields dD*/dx = - [ a / ( l  - a) + l ]6/Aye = -6/(l  - a)Ay', a 
constant. 

This discussion shows how misspecification of the demand relationship by use 
of an improper income variable leads to the erroneous conclusion that a unitary 
uncompensated price elasticity, together with the other restrictions, implies a 
constant dD*/dx. To show explicitly that this elasticity assumption will not yield 
the desired result when the correct income variable is used, note that when 
q = A [y - t (x)] 'p0,  it follows that 

(12) 

d dt dp* 
dx y - t d x f P d l :  

- dq* 

where cq = m / ( y  - t ) is the expenditure share for housing (the second inequality 
uses dt /dx = -mdp*/dx) .  Imposing a Cobb-Douglas production function and 
linear commuting costs and using ( 1 2 )  with /3 = - 1, familiar steps then give 

a quantity which is clearly not constant over x [note m = A ( y  - t)' and tq = 

A ( y  - t)'-' when /3 = -11. The nonconstancy of (13) is, of course, simply a 
reflection of the fact that a unitary uncompensated price elasticity generally 
implies a nonunitary compensated elasticity, which from above must yield a 
nonconstant dD*/dx. Indeed, it is easy to show that dt, - 1, which appears in the 
position of in (lo), is precisely the compensated price elasticity for the given 
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demand function when p = - L4 The obvious restriction 0 > 0 (housing is a normal 
good) implies that the compensated elasticity Oc, - 1 exceeds - 1, accounting for 
the nonconstancy of dD*/dx in (13). 

A wealth of empirical evidence on the parameters of housing demand is now in 
existence [see Mayo (1981) for a recent survey]. An important question is whether 
this evidence justifies use of the negative exponential density function in empirical 
studies (in other words, is the evidence consistent with q = - l?). Unfortunately, 
the answer to this question is unfavorable: nearly all studies show that the 
uncompensated price elasticity of housing demand exceeds - 1, implying that the 
compensated elasticity is substantially greater than - 1. In fact, averaging the joint 
income and price elasticity estimates for owner-occupiers summarized in Mayo’s 
Table 1A and assuming a housing expenditure share of 0.15, the implied value of q 
is -0.58. The magnitude of this number suggests that any negative exponential 
population density regression will involve specification error.5 

As a final observation, it is interesting to note that the preceding discussion 
necessitates reinterpretation of the results of one important empirical study of 
population densities. Recognizing the possibility of specification error, Kau and 
Lee (1976) used an ingenious application of the Box-Cox estimation procedure to 
test for the appropriateness of the negative exponential function rather than 
imposing it a priori. However, since they invoked Mills’ assumptions, Kau and Lee 
interpreted a divergence from the negative exponential form as evidence of a 
nonunitary uncompensated price elasticity of housing demand. Under this inter- 
pretation, their empirical results implied p > -1  for half the sample cities, with 
/3 = -1 holding for the remainder, conclusions which appear consistent with the 
independent evidence of price inelasticity. As should be clear from the above 
discussion, however, the correct inference to be drawn from Kau and Lee’s results 
concerns the compensated price elasticity of housing demand. Correctly inter- 
preted, their results show that this elasticity frequently exceeds - 1, a conclusion 
which need not imply overall price inelasticity. 
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