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a b s t r a c t

This paper constructs tests for heteroskedasticity in one-way error components models, in line with
Baltagi et al. [Baltagi, B.H., Bresson, G., Pirotte, A., 2006. Joint LM test for homoskedasticity in a one-
way error component model. Journal of Econometrics 134, 401–417]. Our tests have two additional
robustness properties. First, standard tests for heteroskedasticity in the individual component are shown
to be negatively affected by heteroskedasticity in the remainder component. We derive modified tests
that are insensitive to heteroskedasticity in the component not being checked, and hence help identify
the source of heteroskedasticity. Second, Gaussian-based LM tests are shown to reject too often in the
presence of heavy-tailed (e.g. t-Student) distributions. By using a conditional moment framework, we
derive distribution-free tests that are robust to non-normalities. Our tests are computationally convenient
since they are based on simple artificial regressions after pooled OLS estimation.

© 2010 Elsevier B.V. All rights reserved.
1. Introduction

Typical panels in econometrics are largely asymmetric, in the
sense that their cross-sectional dimension is much larger than
its temporal one. Consequently, most of the concerns that affect
cross-sectional models harm panel data models similarly. This is
surely the case of heteroskedasticity, a subject that has played a
substantial role in the history of econometric research andpractice,
and still occupies a relevant place in its pedagogical side: all
basic texts include a chapter on the subject. As is well known,
heteroskedasticity invalidates standard inferential procedures,
andusually calls for alternative strategies that either accommodate
heterogeneous conditional variances, or are insensitive to them.
The one-way error components model is the most basic extension
of simple linear models to handle panel data, and it is widely
used in the applied literature. In this model, heteroskedasticity
may now be present in either the ‘individual’ error component, in
the observation-specific ‘remainder’ error component, or in both
simultaneously.

✩ We thank Federico Zincenko for excellent research assistance, Roger Koenker
and Anil Bera for useful discussions, Bernard Lejeune for important clarifications
and for graciously making his computer routines available, and four anonymous
referees, Cheng Hsiao and the associate editor for comments that helped improve
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∗ Corresponding author. Tel.: +44 0 20 7040 8919.

E-mail address: Gabriel.Montes-Rojas.1@city.ac.uk (G. Montes-Rojas).

0304-4076/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.jeconom.2010.09.010
Consider the case of testing for heteroskedasticity. In the cross-
sectional domain, the landmark paper by Breusch and Pagan
(1979) derives a widely used, asymptotically valid test in the
Lagrange multiplier (LM) maximum-likelihood (ML) framework
under normality. Further work by Koenker (1981) proposed
a simple ‘studentization’ that avoids the restrictive Gaussian
assumption. This is an important result since non-normalities
severely affect the performance of the standard LM based test, as
clearly documented by Evans (1992) in a comprehensive Monte
Carlo study. Wooldridge (1990, 1991) and Dastoor (1997) consider
a more general framework allowing for heterokurtosis.

The literature on panel data has only recently produced results
analogous to those available for the cross-sectional case.1 For the
one-way error component, Holly and Gardiol (2000) study the case
where heteroskedasticity is only present in the individual-specific
component, and derive a test statistic that is a direct analogy
of the classic Breusch–Pagan test in an LM framework under
normality.2 Baltagi et al. (2006) allow for heteroskedasticity in both
components andderive a test for the joint null of homoskedasticity,
again, in the Gaussian LM framework. They also derive ‘marginal’
tests for homoskedasticity in either component, that is, tests that
assume that heteroskedasticity is absent in the component not

1 An early contribution on this topic is the seminal paper by Mazodier and
Trognon (1978).
2 Recently, Baltagi et al. (2010) extended this test to incorporate serial correlation

as well.
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being checked, of which, naturally, the test by Holly and Gardiol
(2000) is a particular case. Both articles propose LM-type tests
and, consequently, are based on estimating a null homoskedastic
model, which makes them computationally attractive.3 Closer to
our work is Lejeune (2006), who proposes a pseudo-maximum-
likelihood framework for estimation and inference of a full
heteroskedastic model.

This paper derives new tests for homoskedasticity in the
error components model that possess two robustness properties.
Though the term robust has a long tradition in statistics (Huber,
1981), in this paper it is used to mean being resistant to (1)
misspecification of the conditional variance of the remainder term,
and (2) departures away from the strict Gaussian framework used
in the ML-LM context.

The first robustness property is related to resistance to
misspecification of the a priori admissible hypotheses, that is, to
‘type-III errors’ in the terminology of Kimball (1957) (see Welsh,
1996, pp. 119–120, for a discussion of these concepts). The negative
effects of this type of misspecification on the performance of
LM tests have been studied by Davidson and MacKinnon (1987),
Saikkonen (1989) and Bera and Yoon (1993), and are found to
occur when the score of the parameter of interest is correlated
with that of the nuisance parameter. This type of misspecification
affects the Holly and Gardiol (2000) test in the case where the
temporal dimension of the panel is fixed, which assumes that
heteroskedasticity is absent in the remainder term, and therefore,
rejects its null spuriously not due to heteroskedasticity being
present in the individual component being tested, but in the other
one. This problem can be observed directly in the corresponding
non-zero element of the Fisher information matrix presented in
Baltagi et al. (2006). As discussed in Section 4, Lejeune’s (2006)
tests are similarly affected. In such cases, it is difficult to identify
the presence of heteroskedasticity in the individual component
since it is ‘masked’ by the other source.We propose amodified test
for heteroskedasticity in the individual component that is immune
to the presence of heteroskedasticity in the remainder term, and
hence can identify the source of heteroskedasticity.

The second robustness property is related to the idea of
robustness of validity of Box (1953), that is, tests that achieve an
intended asymptotic level for a rather large family of distributions
(see Welsh, 1996, ch. 5, for a discussion). In this paper, through an
extensive Monte Carlo experiment, non-normalities are shown to
severely affect the performance of the tests by Holly and Gardiol
(2000) and Baltagi et al. (2006), consistentwith the results of Evans
(1992) for the cross-sectional case. We derive new tests using a
conditional moment framework, and thus, they are distribution
free by construction, subject tomild regularity assumptions. In this
context, the LM-type tests proposed by Lejeune (2006) are also
resistant to non-normalities. We also consider the case of possible
heterokurtosis as a simple extension of our framework, along the
line of the work by Wooldridge (1990; 1991) and Dastoor (1997).

An additional advantage of all our proposed statistics is that
of simplicity, since they are based on simple transformations of
pooled OLS residuals of a fully homoskedastic model, unlike the
case of the tests by Holly and Gardiol (2000) and Baltagi et al.
(2006) that require ML estimation. Furthermore, all tests proposed
in this paper can be computed based on the R2 coefficients from
simple artificial regressions.

The paper is organized as follows. Section 2 presents the
heteroskedastic error components model and the set of moment
conditions used to derive test statistics in Section 3. Section 4
presents the results of a detailed Monte Carlo experiment that
compares all our statistics and those obtained by Holly and Gardiol

3 Other related contributions include Roy (2002) and Phillips (2003).
(2000), Baltagi et al. (2006) and Lejeune (2006). Section 5 considers
an extension of the proposed statistics to handle heterokurtosis.
Section 6 concludes and presents suggestions for practitioners and
future research.

2. Moment conditions for the one-way heteroskedastic error
components model

Baltagi et al. (2006) use a parametric error components model
under normality and a ML estimator. In order to highlight
differences and similarities, our search for distribution-free tests
for heteroskedasticitywill be based on a set of appropriatemoment
conditions. Consider the following regression model with general
heteroskedasticity in a one-way error components model:

yit = x′

itβ + uit , uit = µi + νit ,

i = 1, . . . ,N; t = 1, . . . , T , (1)

where yit , uit , µi and νit are scalars, x′

it is a kβ-vector of regressors,
and β is a kβ-vector of parameters. As usual, the subscript i refers
to individual, and t to temporal observations.We follow the condi-
tional moment framework introduced by Newey (1985), Tauchen
(1985) and White (1987), and consider a set of conditioning vari-
ables wit , containing the not necessarily disjoint elements xit , zµi
and zνit . Here zµi and zνit are vectors of regressors of dimensions
kθµ and kθν , respectively. For notational convenience we also de-
fine wi = {wi1, . . . , wit , . . . , wiT } and xi = {xi1, . . . , xit , . . . , xiT }.
Throughout the paper we assume that the conditional mean of
model (1) is well specified, that is, E[uit |wi] = E[uit |xi] = 0. In the
context of the general framework specified by Wooldridge (1990,
p. 18) this implies that the validity of the derived tests actually im-
poses more than just the hypothesis of interest, by ruling out mis-
specification in the conditional mean.4

Further, we assume that the conditional processes µi|wi and
νit |wi are conditionally uncorrelated, independent across i, with
νit |wi also uncorrelated across t , and with zero conditional mean,
conditional variances given by

σ 2
µi ≡ V [µi|wi] = σ 2

µhµ(z ′

µiθµ) > 0, i = 1, . . . ,N, (2)

σ 2
νit ≡ V [νit |wi] = V [νit |wit ] = σ 2

ν hν(z ′

νitθν) > 0,

i = 1, . . . ,N; t = 1, . . . , T , (3)

and finite fourth moments. hµ(.) and hν(.) are twice continuously
differentiable functions satisfying hµ(.) > 0, hν(.) > 0, hµ(0) =

1, hν(0) = 1, h(1)
µ (0) ≠ 0 and h(1)

ν (0) ≠ 0, where h(j) denotes their
jth derivatives.

In this setup, θµ and θν will be the parameters of interest. A
test for heteroskedasticity in the individual-specific component is

based on the null hypothesis H
σ 2
µ

0 : θµ = 0; and a test for hetero-

skedasticity in the remainder error term is based on Hσ 2
ν

0 : θν = 0.
Testing for the validity of the full homoskedastic model implies a

joint test with null hypothesis H
σ 2
µ,σ 2

ν

0 : θν = θµ = 0. Because, in
general, the nature of the heteroskedasticity is unknown, zµ and zν
may be similar, when not identical, hence we cannot rely on them
to distinguish among different types of heteroskedasticity.

Let ui ≡ T−1∑T
t=1 uit be the between residuals and ũit ≡

uit − ūi the within residuals. Different moment conditions on
these errors provide alternative ways of testing for both sources
of heteroskedasticity.

4 Before testing for heteroskedasticity, it would be necessary first to check that
the conditional mean is correctly specified. Lejeune (2006) provides robust tests for
that purpose.
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The squared between residual provides moment conditions for

testing H
σ 2
µ

0 :

E[ū2
i |wi] = σ 2

µhµ(z ′

µiθµ) + T−2σ 2
ν

T−
t=1

hν(z ′

νitθν). (4)

If Hσ 2
ν

0 is true, that is, if there is no heteroskedasticity in the
remainder component, it simplifies to

E[u2
i |wi] = σ 2

µhµ(z ′

µiθµ) + T−1σ 2
ν . (5)

Moreover, if Hσ 2
ν

0 does not hold, but N → ∞ and T → ∞, the
presence of heteroskedasticity in the remainder component has no
effect on a test for homoskedasticity in the individual component

based on (5). In this case a test forH
σ 2
µ

0 is said to be robust to the va-

lidity of Hσ 2
ν

0 . Second, if N → ∞ and T is fixed, but Hσ 2
ν

0 is true, the
moment condition in (5) holds. A test for these cases can be based
on N times the centered R2 of an auxiliary regression of ū2 on zµ
and a constant, as shown in the next section.

However, if N → ∞, T is fixed and Hσ 2
ν

0 does not hold, tests
based on (4)may led to spurious rejections because of the presence
of heteroskedasticity in the remainder component. For this case,
define

˜̄u
2
i = ū2

i − T−2
T−

t=1

ũ2
it − T−3

T−
t=1

ũ2
it − T−4

T−
t=1

ũ2
it . . .

= ū2
i −

T−2

1 − T−1

T−
t=1

ũ2
it ,

and note that

E[ ˜̄u
2
i |wi] = E


ū2
i −

T−2

1 − T−1

T−
t=1

ũ2
it |wi


= σ 2

µhµ(z ′

µiθν). (6)

Unlike (4), this moment condition does not involve parameters
related to heteroskedasticity in the remainder component, and,
hence, it will be used in Section 3.2 to construct tests for
heteroskedasticity in the individual component in short panels that
are robust to the presence of heteroskedasticity in the remainder
component.

Consider now the moment condition based on the squared
within residual:

E[ũ2
it |wi] = σ 2

ν


(1 − 2T−1

+ T−2)hν(z ′

νitθν)

+ T−2
T−
j≠t

hν(z ′

νijθν)


. (7)

This condition can be used to construct tests for Hσ 2
ν

0 . Note that
σ 2

µ and θµ do not appear anywhere in (7), which means that a test
based on this moment condition will be robust to the presence
of heteroskedasticity in the individual error component, i.e. when
θµ ≠ 0. A test for heteroskedasticity in the remainder component
will be based on NT × R2, where R2 is the centered coefficient of
determination of an auxiliary regression of ũ2 on zν and a constant
(see Section 3.3). Note, theremay be differences between short and
long panels because E[ũ2

it |wi] = σ 2
ν (hν(z ′

νitθν) + O(T−1)). This is
explored in Section 3.4.

3. Robust tests for heteroskedasticity

Our tests will be based on the moment conditions considered
in the previous section, following Koenker’s (1981) studentization
procedure. We use the asymptotic framework of Dastoor (1997)
adapted to the one-way error components model structure
described above.

Assumption 1. For each i = 1, . . . ,N and t = 1, . . . , T , E[wj,it
w′

j,it ] is a finite positive definite matrix, where wj,it is a column
vector containing the distinct elements of w and 1. Moreover,
E[|wj,it |

2+ϵ
], E[|wj,itµ

2
i |

2+ϵ
] and E[|wj,itν

2
it |

2+ϵ
] are uniformly

bounded for some ϵ > 0.

Dastoor’s framework includesWooldridge’s (1990; 1991) setup
for heterokurtosis, that is, the case where the error term is allowed
to have different conditional fourth moments. In our case, this
would involve allowing that both E[(µ2

i − σ 2
µ hµ(z ′

µiθµ))2|wi] and
E[(ν2

it − σ 2
ν hν(z ′

νitθν))
2
|wi] are not constants. In this section we

derive tests assuming homokurtosis, since it provides an intuitive
framework to motivate the statistics. The heterokurtic case and
a related Monte Carlo exploration are treated as an extension in
Section 5.

Assumption 2. For each i = 1, . . . ,N , and t = 1, . . . , T , E[(µ2
i −

σ 2
µ hµ(z ′

µiθµ))2|wi] = Gµ < ∞ and E[(ν2
it − σ 2

ν hν(z ′

νitθν))
2
|wi] =

Gν < ∞.

The test statistics will be based on transformations of the OLS
residuals ûit ≡ yit−x′

it β̂ , where β̂ is theOLS estimator of regression
model (1).

3.1. Test for H
σ 2
µ

0 . Cases N, T → ∞ and N → ∞, T finite and θν = 0

For these two cases, a test for H
σ 2
µ

0 will be based on ¯̂ηi = ¯̂u
2
i ,

where ûi ≡ T−1∑T
t=1 ûit . Define ¯̂η, a N-vector containing the

sample squared between residuals, Zµ, a N × kθµ matrix with
the sample matrix of covariates for testing this hypothesis, and
MN ≡ IN − J̄N , where J̄N = ιN ι′N/N and ιN is a (N × 1) vector
of ones. Consider a sequence of alternatives à la Pitman such that
θµ = δµ/

√
N and 0 ≤ ‖δµ‖ < ∞, where ‖.‖ is the Euclidean

norm. The following Theorem derives a valid test statistic for H
σ 2
µ

0
for the two cases being considered.

Theorem 1. Let φµ = Var[ū2
i |wi], Dµ = limN→∞ E[

1
N ZµM ′

NZµ]

and λµ =
σ 4
µh(1)

µ (0)2

φµ
δ′
µDµδµ. Then, under Assumptions 1 and 2, as

N, T → ∞ or N → ∞, T fixed and Hσ 2
ν

0 , and under H
σ 2
µ

A : θµ = δµ/
√
N,

mµ ≡ N × ( ¯̂η
′

MN
¯̂η)−1 ¯̂η

′

MNZµ(Z′

µMNZµ)−1Z′

µ

×MN
¯̂η

d
→ χ2

kθµ
(λµ). (8)

Proof. Note that the sequence of random variables {ū2
i } is

independent. Moreover, by taking a Taylor series expansion
of the function hµ(.) and Assumption 1, 1

√
N
Z′

µMN η̄ = σ 2
µh

(1)
µ (0)

δ′
µDµ + op(1) and limN→∞ Var[ 1

√
N
Z′

µMN η̄] = φµDµ, where η̄ =

{ū2
1, . . . , ū

2
N}. Also note that φµ =

1
N η̄′MN η̄ + op(1). Now we

apply Theorem 1 in Dastoor (1997) for our sequence of squared
OLS between residuals on i = 1, . . . ,N , which under Assumption 2
(homokurtosis) gives the desired result. �

Note that ifµ is Gaussian,φµ = 2×(σ 2
µ+T−1σ 2

ν )2, and then the
Koenker-type test reduces to theHolly andGardiol (2000)marginal
test, which is similar to the Breusch and Pagan (1979) test where
the between OLS residuals are used instead of the untransformed
OLS residuals.
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Consider now the auxiliary regressionmodel (see Davidson and
MacKinnon, 1990, on the use of artificial regressions)

¯̂u
2
i = α + z ′

µiγ + residual. (9)

Note that mµ is N × R2
µ where R2

µ is the centered coefficient of
determination of this regression model, i.e. an auxiliary regression
of ¯̂η on zµ and a constant (see Koenker, 1981, p. 111).

3.2. Test for H
σ 2
µ

0 . Case N → ∞, T finite and θν ≠ 0

A test for the individual component in short panels with
potential heteroskedasticity in the remainder component requires

the use of condition (6). A test for H
σ 2
µ

0 will be based on ˜̄
η̂i =

˜̄û
2

i ,

where ˜̄û
2

i = ¯̂u
2
i −

T−2

1−T−1

∑T
t=1

˜̂u
2
it and ˜̂uit ≡ ûit − ¯̂ui. Define

˜̄
η̂, a

N-vector containing the transformed sample residuals.

Theorem 2. Let φ∗
µ = limN→∞ Var[ ˜̄u

2
i |wi] and λ∗

µ =
σ 4
µh(1)

µ (0)2

φ∗
µ

δ′
µ

Dµδµ. Then, under Assumptions 1 and 2, as N → ∞ and under H
σ 2
µ

A :

θµ = δµ/
√
N,

m∗

µ ≡ N × (
˜̄
η̂

′

MN
˜̄
η̂)−1 ˜̄

η̂
′

MNZµ(Z′

µMNZµ)−1Z′

µMN
˜̄
η̂

d
→ χ2

kθµ
(λ∗

µ). (10)

Proof. Similar to that in Theorem 1. �

Consider the auxiliary regression model

˜̄û
2

i = α + z ′

µiγ + residual. (11)

Using a similar argument as before, m∗
µ = N × R2∗

µ where R2∗
µ is

the centered coefficient of determination of the regression model.
Note that the auxiliary regression model (11) covers that in model
(9), and therefore, the case analyzed here is a generalization of the
former.

3.3. Test for Hσ 2
ν

0 . N, T → ∞

Consider a test for homoskedasticity in the remainder compo-

nent in long panels with N, T → ∞. Define ˜̂ηit = ˜̂u
2
it , where ˜̂uit ≡

ûit − ¯̂ui, ˜̂η, a NT -vector containing the sample within residuals
squared, Zν , a NT × kθν matrix with the sample matrix of covari-
ates for testing this hypothesis, and MNT = INT − (J̄N ⊗ J̄T ), where
J̄T = ιT ι

′

T/T , ⊗ is the Kronecker product, and ιT is a (T×1) vector of
ones. Consider a sequence of local alternatives (Pitman drift) such
that θν = δν/

√
NT and 0 ≤ ‖δν‖ < ∞. The following Theorem

derives an asymptotically valid test for this hypothesis.

Theorem 3. Let φν = limN,T→∞ Var[ũ2
it |wi] = Gν,Dν =

limN,T→∞ E[
1
NT ZνM ′

NTZν] and λν =
σ 4
ν h(1)

ν (0)2

φν
δ′
νDνδν . Then, under

Assumptions 1 and 2, as N, T → ∞ and under Hσ 2
ν

A : θν = δν/
√
NT ,

mν ≡ NT × ( ˜̂η
′

MNT
˜̂η)−1 ˜̂η

′

MNTZν(Z′

νMNTZν)
−1Z′

νMNT
˜̂η

d
→ χ2

kθν
(λν). (12)

Proof. Note that the sequence of random variables {ũ2
it} is asymp-

totically independent as T → ∞, because Cov[ũ2
it , ũ

2
kh|wi, wk] =
0, i ≠ k and Cov[ũ2
it , ũ

2
ih|wi] = O(T−2), t ≠ h. Then follow the

proof of Theorem 1 for our sequence on i = 1, . . . ,N and t =

1, . . . , T , which under Assumption 2 (homokurtosis) gives the
desired result. �

Note that if νit is Gaussian, φν = 2 × σ 4
ν , so this Koenker-type

test is the same as the Breusch–Pagan style test where the within
OLS residual is used instead of the untransformed OLS residual.

Consider now the auxiliary regression model

˜̂u
2
it = α + z ′

νitγ + residual. (13)

Again, mν = NT × R2
ν , where R2

ν is the centered coefficient of
determination of the regression model.5

3.4. Test for Hσ 2
ν

0 . N → ∞ and T finite

Consider now the case where N → ∞ and T is finite. For this
case, consider a Taylor expansion of Eq. (7) where θν is expanded
about 0,

E[ũ2
it |wi] = σ 2

ν + σ 2
ν


(1 − 2T−1)h(1)

ν (0) z ′

νitθν

+ T−2
T−

j=1

h(1)
ν (0) z ′

νijθν


+ o(‖θ∗

ν ‖)

= σ 2
ν + σ 2

ν ((1 − 2T−1)h(1)
ν (0) z ′

νitθν

+ T−1h(1)
ν (0)z̄ ′

νiθν) + o(‖θ∗

ν ‖)

where z̄νi = T−1∑T
t=1 zνit , i = 1, . . . ,N and θ∗

ν is between
θν and 0. Moreover, note that Cov[ũ2

it , ũ
2
ih|wi] = c = O(T−2),

then, for T finite, additional covariance terms need to be taken
into consideration. Define limN→∞ Var[ 1

√
NT

Z̃ ′
νMNT η̃] = Ων , where

Z̃ν is a NT × kθν matrix with the sample matrix of covariates
with typical element {(1 − 2T−1)zνit + T−1z̄νi}, η̃ is vector of
within residuals {ũit}, and let Φ̂ν be a consistent estimate of that
variance–covariance matrix of η̃.

Theorem 4. Let λν = σ 4
ν h

(1)
ν (0)2δ′

ν D̃νΩ
−1
ν D̃νδν where D̃ν =

limN→∞ E[
1
NT Z̃νM ′

NT Z̃ν]. Then, under Assumptions 1 and 2, as N →

∞, T fixed and under Hσ 2
ν

A : θν = δν/
√
NT ,

m∗

ν ≡ NT × ˜̂η
′

MNT Z̃ν(Z̃ ′

νMNT Z̃ν)(Z̃ ′

νMNT Φ̂νMNT Z̃ν)
−1

× (Z̃ ′

νMNT Z̃ν)Z̃ ′

νMNT
˜̂η

d
→ χ2

kθν
(λν).

Proof. The proof follows from Theorem 3 and Dastoor’s (1997)
Theorem 1. �

A convenient way to implement this test is based on the
auxiliary regression model

˜̂u
2
it = α + z̃ ′

νitγ + residual, (14)

and note that NT × R2∗
ν = m∗

ν + o(T−(2+ϵ)) for any ϵ > 0, where
R∗2

ν is the centered coefficient of determination of this regression
model.6

5 As noted by an anonymous referee a significant limitation of this test is that
νit |wi is not serially correlated and it should not be very difficult to construct
a modified test that do not rely on this assumption (see for instance the next
subsection, where additional covariance terms are considered).
6 The Monte Carlo experiments of the next section are carried out with T ≥

5, and we find no significant discrepancies between the results obtained from
model (14) and those carried out based on the statistic in Theorem 4, where
the within individuals covariance terms c in Φ̂ν are estimated as 1

NT (T−1)∑N
i=1
∑T

t=1
∑T

h≠t
˜̂u
2
it
˜̂u
2
ih .
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3.5. Test for H
σ 2
ν ,σ 2

µ

0

Following Baltagi et al. (2006) we construct a joint test based on
the sum of the individual tests,

mµ,ν = mµ + mν . (15)

With N and T tending to infinity, the joint test is trivially
derived by exploiting the two orthogonal moment conditions (5)
and (7) and hence a valid test is based on the sum of the marginal
tests for each source of heteroskedasticity, which involve the sum
of independent chi-squared random variables, and therefore, we
have that mµ,ν

d
→ χ2

kθµ+kθν
. Note that the joint test by Baltagi

et al. (2006) also reduces to the sum of two marginal tests when
T → ∞. A preliminary analysis of the Monte Carlo experiments
showed thatwith T small,mµ,ν behave similarly to the large T case,
and therefore, we find that it is not necessary tomake a small panel
correction.

4. Monte Carlo experiments

In order to explore the robustness properties of the proposed
tests in small samples, the design of our Monte Carlo experiment
will initially follow very closely that of Baltagi et al. (2006), to
which we refer for further details on the experimental design, and
will be modified accordingly to highlight some specific features of
our tests. The baseline model is:

yit = β0 + β1xit + µi + νit , i = 1, . . . ,N; t = 1, . . . , T , (16)

where xit = wi,t +0.5wi,t−1 andwi,t ∼ iid U(0, 2). The parameters
β0 and β1 are assigned values 5 and 0.5, respectively. For each xi,
we generate T +10 observations and drop the first 10 observations
in order to reduce the dependency on initial values.

The experiment considers three cases, corresponding to differ-
ent sources of heteroskedasticity. In all of them, the total variance
is set to σ̄ 2

µ + σ̄ 2
ν = 8, where σ̄ 2

µ = E(σ 2
µi

) and σ̄ 2
ν = E(σ 2

νit
).

For all DGPs, νit has zero mean and variance σ 2
νit
, while µi has zero

mean and variance σ 2
µi
. For each case we consider exponential het-

eroskedasticity, h(z ′θ) = exp(z ′θ).7 The following heteroskedastic
models are considered:
Heteroskedasticity in the remainder component (case a): σ 2

νit
=

σ 2
ν hν(θνxit), σ 2

µi
= σ 2

µ, θν ∈ {0, 1, 2, 3}, and θµ = 0.

Heteroskedasticity in the remainder component (case b): σ 2
νit

=

σ 2
ν hν(θν x̄i), x̄i = T−1∑T

t=1 xit , σ
2
µi

= σ 2
µ, θν ∈ {0, 1, 2, 3}, and

θµ = 0.

Heteroskedasticity in the individual component: σ 2
µi

= σ 2
µhµ(θµx̄i),

x̄i = T−1∑T
t=1 xit , σ

2
νit

= σ 2
ν , θµ ∈ {0, 1, 2, 3}, and θν = 0.

For each replication we have computed the test statistics
proposed in this paper, those based on Lejeune’s (2006) framework
(based on pooled OLS residuals), and those of Baltagi et al. (2006)
and Holly and Gardiol (2000), using residuals after ML estimation.
In particular, the statistics considered and their corresponding null
hypotheses are:

• mµ. H
σ 2
µ

0 : θµ = 0. The statistic is N-times the R2 from the

pooledOLS regression of ¯̂u
2
i on x̄i and a constant (see Section 3.1,

Eq. (8)).

7 Simulations were also run for quadratic heteroskedasticity, h(z ′θ) = (1 +

z ′θ)2 , and the results are similar for size and power to those of exponential
heteroskedasticity. Following the referees’ suggestions we omit these results but
they are available from the authors upon request.
• m∗
µ. H

σ 2
µ

0 : θµ = 0. This test statistic is robust to the validity of

Hσ 2
ν

0 in short panels, and is N-times the R2 from the pooled OLS

regression of ˜̄û
2

it on xit and a constant (see Section 3.2, Eq. (10)).

• HGµ. H
σ 2
µ

0 : θµ = 0. Holly and Gardiol’s (2000) ‘marginal’ test
for no heteroskedasticity in the individual component.

• Lµ. H0 : θµ = θν = 0. Lejeune’s (2006) ‘marginal’ test for no
heteroskedasticity in the individual component.

• mν . H
σ 2
ν

0 : θν = 0. The statistic is NT -times the R2 from the

pooled OLS regression of ˜̂u
2
it on xit and a constant (see

Section 3.3, Eq. (12)).

• m∗
ν . H

σ 2
ν

0 : θν = 0. This is a finite T corrected version of the
previous statistic, and is NT -times the R2 from the pooled OLS

regression of ˜̂u
2
it on x̃it and a constant, with x̃∗

it = (1−2T−1)xit +
T−1x̄i. (see Section 3.4, Eq. (14)).

• BBPν . H
σ 2
ν

0 : θν = 0. This is the marginal tests for the null of no
heteroskedasticity in the remainder component in Baltagi et al.
(2006), for the case where heteroskedasticity varies with i and
t; see their Section 3.2, Eq. (10).

• BBP ′
ν . H

σ 2
ν

0 : θν = 0. In this case, it is assumed that the variance
of νit varies only with i = 1, . . . ,N . See Baltagi et al. (2006),
Section 3.2, Eq. (11).

• Lν . H0 : θµ = θν = 0. Lejeune’s (2006) ‘marginal’ test for no
heteroskedasticity in the remainder component.

• mµ,ν . H0 : θµ = θν = 0. This is the proposed statistic for the
joint null of homoskedasticity in both components, and is the
sum ofmµ andmν (see Section 3.5, Eq. (15)).

• BBPµ,ν . H0 : θµ = θν = 0. This is Baltagi et al.’s (2006) test for
the joint null; see their Section 3.2, Eq. (13).

• Lµ,ν . H0 : θµ = θν = 0. This is Lejeune’s (2006) test for the joint
null.

We have performed 5000 replications for each case, and the
proportion of rejections was obtained based on a 5% nominal level.
The main goals of the experiment are to quantify (1) the effects
of misspecified heteroskedasticity on new and existing tests, (2)
the effects of departures away from Gaussianity, (3) the ‘cost of
robustification’, that is, the potential power losses due to using
robust tests when the ‘ideal’ conditions (normality and correct
specification) used to derive the ML-LM based tests hold, and
hence a robustification is not necessary. In order to isolate each
problem, in the first subsection we will focus on robustness to
misspecification, and in the second one on robustness of validity,
measuring robustification costs for each case.

4.1. Robustness to misspecified heteroskedasticity

Tables 1–3 present simulation results for the Gaussian DGP, for
(N, T ) = (50, 5) and (N, T ) = (25, 10) panel sizes, with µi ∼

N(0, σ 2
µi

), νit ∼ N(0, σ 2
νit

). Each table is split into four horizontal
panels, corresponding to different variance values and panel sizes.

It is important to note that all tests are constructed using
parameters estimated under the joint null hypothesis of full
homoskedasticity. The Holly and Gardiol (2000), Baltagi et al.
(2006) and Lejeune (2006) statistics may be affected by the
presence of heteroskedasticity in the other component not being
tested and which is ignored. For instance, as discussed in
Section 3, misspecified heteroskedasticity is expected to affect the
performance of the Holly and Gardiol (2000) statistic, that is, a
test for heteroskedasticity in the individual component assuming
no heteroskedasticity in the remainder component. Similarly, it
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Table 1
Empirical rejection probabilities. DGP: Normal. Heteroskedasticity in the remainder component (case a).

θµ θν Exponential heteroskedasticity
mµ m∗

µ HGµ Lµ mν m∗
ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

σ 2
µ = 6, σ̄ 2

ν = 2
N = 25, T = 10

0 0 0.047 0.047 0.045 0.032 0.052 0.093 0.045 0.045 0.050 0.041 0.044 0.025
0 1 0.053 0.049 0.048 0.054 1.000 0.463 0.999 0.900 0.998 0.364 0.998 0.361
0 2 0.055 0.054 0.056 0.080 1.000 0.808 1.000 0.998 1.000 0.634 1.000 0.654
0 3 0.063 0.061 0.061 0.097 1.000 0.889 1.000 0.999 1.000 0.698 1.000 0.661

N = 50, T = 5

0 0 0.053 0.054 0.040 0.041 0.062 0.092 0.057 0.043 0.047 0.057 0.045 0.034
0 1 0.056 0.055 0.046 0.083 1.000 0.428 1.000 0.695 0.324 1.000 1.000 0.343
0 2 0.054 0.054 0.042 0.164 1.000 0.788 1.000 0.949 0.619 1.000 1.000 0.658
0 3 0.053 0.054 0.045 0.209 1.000 0.878 1.000 0.975 0.695 1.000 1.000 0.693

σ 2
µ = 2, σ̄ 2

ν = 6
N = 25, T = 10

0 0 0.055 0.054 0.049 0.039 0.056 0.052 0.053 0.047 0.047 0.050 0.049 0.035
0 1 0.099 0.069 0.092 0.288 0.999 0.996 1.000 0.903 0.999 0.985 1.000 0.944
0 2 0.181 0.088 0.183 0.485 1.000 1.000 1.000 0.998 1.000 0.996 1.000 0.981
0 3 0.276 0.119 0.300 0.512 1.000 1.000 1.000 0.999 1.000 0.980 1.000 0.937

N = 50, T = 5

0 0 0.049 0.049 0.042 0.045 0.050 0.053 0.049 0.048 0.047 0.050 0.044 0.041
0 1 0.053 0.053 0.046 0.610 1.000 0.997 1.000 0.698 0.990 1.000 1.000 0.968
0 2 0.066 0.055 0.052 0.877 1.000 1.000 1.000 0.956 0.998 1.000 1.000 0.993
0 3 0.076 0.069 0.069 0.865 1.000 1.000 1.000 0.970 0.987 1.000 1.000 0.966

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the remainder component, case a: σ 2
νit

= σ 2
ν hν(θνxit ), σ 2

µi
= σ 2

µ ,
θν ∈ {0, 1, 2, 3}, and θµ = 0.
Table 2
Empirical rejection probabilities. DGP: Normal. Heteroskedasticity in the remainder component (case b).

θµ θν Exponential heteroskedasticity
mµ m∗

µ HGµ Lµ mν m∗
ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

σ 2
µ = 6, σ̄ 2

ν = 2
N = 25, T = 10

0 0 0.050 0.050 0.047 0.036 0.048 0.049 0.047 0.050 0.039 0.045 0.040 0.023
0 1 0.053 0.053 0.046 0.053 0.205 0.238 0.194 0.745 0.054 0.165 0.146 0.034
0 2 0.053 0.053 0.045 0.090 0.493 0.567 0.554 0.995 0.073 0.396 0.479 0.053
0 3 0.054 0.053 0.041 0.143 0.680 0.755 0.787 1.000 0.102 0.582 0.730 0.074

N = 50, T = 5

0 0 0.044 0.045 0.043 0.044 0.057 0.063 0.052 0.051 0.047 0.056 0.047 0.037
0 1 0.052 0.048 0.046 0.088 0.547 0.694 0.531 0.924 0.074 0.454 0.446 0.062
0 2 0.058 0.056 0.056 0.197 0.917 0.978 0.943 1.000 0.153 0.874 0.912 0.121
0 3 0.070 0.064 0.065 0.281 0.979 0.998 0.993 1.000 0.214 0.956 0.990 0.170

σ 2
µ = 2, σ̄ 2

ν = 6
N = 25, T = 10

0 0 0.046 0.048 0.038 0.040 0.048 0.051 0.045 0.051 0.047 0.047 0.044 0.032
0 1 0.052 0.053 0.043 0.336 0.212 0.245 0.191 0.735 0.117 0.167 0.447 0.199
0 2 0.072 0.071 0.064 0.697 0.509 0.586 0.553 0.996 0.261 0.436 0.917 0.481
0 3 0.096 0.093 0.093 0.764 0.687 0.757 0.777 1.000 0.374 0.618 0.990 0.554

N = 50, T = 5

0 0 0.046 0.048 0.043 0.050 0.053 0.055 0.051 0.040 0.051 0.055 0.044 0.043
0 1 0.103 0.065 0.095 0.666 0.556 0.696 0.514 0.934 0.337 0.492 0.447 0.498
0 2 0.232 0.117 0.242 0.932 0.922 0.979 0.934 1.000 0.679 0.906 0.917 0.823
0 3 0.377 0.182 0.396 0.897 0.979 0.997 0.992 1.000 0.774 0.970 0.990 0.775

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the remainder component, case b: σ 2
νit

= σ 2
ν hν(θν x̄i), σ 2

µi
= σ 2

µ ,
θν ∈ {0, 1, 2, 3}, and θµ = 0.
should affect the performance of mµ, our test robustified to non-
normalities only. We expect our fully robust test m∗

µ to be more
resistant to this type of misspecification.

Consider first Tables 1 and 2, that is, when there is het-
eroskedasticity in the remainder component only, cases a and b, re-
spectively. As predicted by the results in Section 3, in terms of size
distortion,mµ andHGµ becomenegatively affected by thepresence
of heteroskedasticity in the remainder component, that is, they
tend to reject their nulls not due to the presence of heteroskedas-
ticity in the individual component but in the other one. For ex-
ample, in Table 1, with small T , the rejection rates reach 0.3 for a
nominal size of 0.05. The Monte Carlo results show that this prob-
lem affects the corresponding test by Lejeune (Lµ) as well. Monte
Carlo results on Lejeune’s (2006) procedures are new, so it is
relevant to observe that the test designed specifically to detect
heteroskedasticity in the remainder component, Lν , has correct
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Table 3
Empirical rejection probabilities. DGP: Normal. Heteroskedasticity in the individual component.

θµ θν Exponential heteroskedasticity
mµ m∗

µ HGµ Lµ mν m∗
ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

σ̄ 2
µ = 6, σ 2

ν = 2
N = 25, T = 10

0 0 0.048 0.047 0.045 0.035 0.054 0.095 0.049 0.050 0.043 0.049 0.044 0.027
1 0 0.326 0.327 0.344 0.067 0.055 0.172 0.049 0.049 0.072 0.255 0.276 0.042
2 0 0.776 0.773 0.815 0.151 0.054 0.330 0.049 0.051 0.131 0.662 0.737 0.077
3 0 0.952 0.953 0.974 0.232 0.051 0.494 0.046 0.055 0.205 0.881 0.950 0.126

N = 50, T = 5

0 0 0.053 0.053 0.039 0.039 0.050 0.092 0.049 0.044 0.042 0.048 0.043 0.033
1 0 0.122 0.121 0.121 0.235 0.049 0.368 0.047 0.048 0.193 0.095 0.098 0.137
2 0 0.298 0.298 0.315 0.547 0.049 0.743 0.049 0.044 0.459 0.217 0.253 0.334
3 0 0.511 0.511 0.562 0.642 0.050 0.911 0.047 0.050 0.575 0.373 0.467 0.430

σ̄ 2
µ = 2, σ 2

ν = 6
N = 25, T = 10

0 0 0.047 0.050 0.047 0.040 0.054 0.053 0.049 0.047 0.046 0.053 0.050 0.034
1 0 0.175 0.169 0.175 0.050 0.052 0.067 0.047 0.057 0.055 0.141 0.139 0.040
2 0 0.476 0.462 0.504 0.088 0.053 0.094 0.050 0.071 0.055 0.377 0.413 0.052
3 0 0.721 0.694 0.747 0.119 0.055 0.145 0.053 0.084 0.076 0.598 0.654 0.073

N = 50, T = 5

0 0 0.052 0.054 0.042 0.049 0.056 0.056 0.053 0.040 0.046 0.052 0.051 0.042
1 0 0.093 0.096 0.088 0.095 0.050 0.094 0.050 0.046 0.078 0.076 0.079 0.067
2 0 0.218 0.219 0.220 0.202 0.051 0.193 0.045 0.051 0.119 0.159 0.173 0.123
3 0 0.380 0.378 0.412 0.265 0.051 0.313 0.050 0.051 0.157 0.279 0.333 0.162

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%. Heteroskedasticity in the individual component: σ 2
µi

= σ 2
µhµ(θµ x̄i), x̄i = T−1∑T

t=1 xit , σ
2
νit

=

σ 2
ν , θµ ∈ {0, 1, 2, 3}, and θν = 0.
size and power increasing with the strength of heteroskedastic-
ity, as can be seen in Table 1. Interestingly, the robustified test m∗

µ

presents much lower rejection rates (almost a third of their com-
petitors), hence beingmore resistant tomisspecifications in the al-
ternative hypothesis.

It is important to observe that, as predicted by the results of
Section 2, the effects of misspecification are stronger the smaller
the T is and the more important is the between variation in
the remainder component. The first effect can be appreciated by
comparing results for different panel sizes, and the second by
comparing the cases σ 2

µ = 6, σ̄ 2
ν = 2 and σ 2

µ = 2, σ̄ 2
ν = 6 in

Tables 1 and 2.
In order to highlight these points, consider the following exper-

iments, which are a variation of the exponential heteroskedasticity
in the remainder component, case a, where σ 2

µ = 2 for all i, λν = 3,
and σ̄ 2

ν = 6. First, to assess the sensitivity of the proposed statistics
to the panel size, we fix N = 50 and consider 1000 simulations for
each T ∈ {2, 3, . . . , 30}. Simulation results are presented graph-
ically in Fig. 1, and show that the main problem arises because of
short panels. Moreover, it shows that the main gain of using m∗

µ is
in the small T case, the most likely situation in practice. All tests
achieve correct size for large T , butm∗

µ achieves the correct size in
shorter panels.

Second, we have also computed rejection rates depending on
the size of the cross-sectional dimension of the panel, N , keeping
fixed the temporal dimension; see Figs. 2 and 3. In particular, we fix
T = 2, 5 and consider 1000 simulations for each N ∈ {10, 20, . . . ,
200}. Results show thatmµ,HGµ and Lµ increasingly (andwrongly)
reject as N increases. Nevertheless, m∗

µ remains insensitive to
changes in N , although rejection rates are above 0.05.

Finally, we explored the effects of the relative importance
of between vs. within heteroskedasticity in the remainder
component. Consider now the following form of functional
heteroskedasticity:

σ 2
νit

= σ 2
ν ∗ exp(λν ∗ (α ∗ (xit − x̄i) + (1 − α) ∗ xit)),
R
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Fig. 1. Heteroskedasticity in the remainder component with T varying.

with α ∈ [0, 1]. If α = 0, this corresponds to case a in Table 1.
If α = 1, by construction, there is only within heteroskedasticity,
and therefore no differences in the variance across individuals.
For different values of α, we have generated 1000 replications for
(N, T ) = (50, 5), and calculate the empirical size at a theoretical
level of 5% of HGµ, Lµ, mµ and m∗

µ. Results are shown graphically
in Fig. 4. HGµ, Lµ and mµ reject too often for small α, while m∗

µ

has better size properties. Moreover, for the four statistics, the
simulated empirical size approaches the theoretical level as α goes
to 1.

Regarding robustification costs, tests specifically designed to
detect heteroskedasticity in the remainder (mν, BBPν, BBP ′

ν, Lν)
increase their empirical power with the strength of this type of
heteroskedasticity and, as expected under normality, the power
of BBPν is the largest. Interestingly, our robust test mν performs
relatively close to the Baltagi et al. (2006) LM statistics, implying
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Fig. 2. Heteroskedasticity in the remainder component with N varying, T = 2.
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Fig. 3. Heteroskedasticity in the remainder component with N varying, T = 5.
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Fig. 4. Within–between heteroskedasticity in the remainder component.

that robustification costs for these particular experiments are low,
that is, the loss in power for unnecessarily using a robust test
is minor. Finally, note that the performance of m∗

ν , our proposed
statistic designed to increase its power in small samples, is not
as good as expected. First, it shows over-rejection for the (σ 2

µ =

6, σ 2
ν = 2) case. Second, its power outperforms that of mν only in

Table 2.
Consider now Table 3, where we have heteroskedasticity in

the individual component only under Gaussianity. The Holly and
Gardiol (2000) test is locally optimal and should have correct
asymptotic size, so robustification is not necessary. Our robust
statisticsmµ andm∗

µ have very similar rejection rates for all values
of θµ, suggesting that robustification cost are small in this case too.
Interestingly, the test by Lejeune (2006) has increasing power, and
for the (50, 5) case it outperforms the optimal test by Holly and
Gardiol (2000).

As heteroskedasticity in the individual component increases,
(mν, BBPν, BBP ′

ν) present rejection rates similar to their nominal
levels, consistent with the fact that tests that check heteroskedas-
ticity in the remainder component are immune to the presence of
heteroskedasticity in the individual one. Interestingly Lν and m∗

ν

present unwanted power, that is, they reject their nulls due to het-
eroskedasticity in the other component, and hence are not robust
to this misspecification.

Finally, joint tests present increasing power, though, as
expected, they are outperformed by the marginal tests specifically
designed to detect departures in a single component. The
distribution-free joint statistic mµ,ν has less power than BBPµ,ν

(which assumes Gaussianity) but the power loss is very small,
suggesting again that robustification costs are negligible. Results
are similar when the relative importance of each component is
altered (that is, by comparing the two horizontal panels). Again,
for the N = 50, T = 5 case and when the individual variance is
relatively larger than the individual one (second panel of Table 3),
the joint test by Lejeune (2006) presents the highest power.

Although not reported (results are available from the authors
upon request), for completeness, we have also considered the
case of heteroskedasticity in both components.8 Our proposed
moment-based marginal tests do not diminish their power as
we add misspecification of the type not being tested. That
is, in general, their power performance increases for greater
heteroskedasticity in the other component, and in fact, they have
a similar performance to the Baltagi et al. (2006) LM tests.

To summarize, the robustification costs incurred by all our
new statistics are small, as measured by the loss in power by
unnecessarily using resistant tests in the Gaussian case.

4.2. Robustness of validity

In order to explore the effect of departures away from
Gaussianity, we evaluate the performance of all the test statistics
under H0 : θµ = θν = 0,N = 50 and T = 5, for non-normal
DGPs using 5000 replications. First, we generate t-Student DGPs
with 3 and 5 degrees of freedom. Second, we consider skewed-
normal distributions constructed as in Azzalini and Capitanio
(2003).9 Finally, we have also considered log-normal, exponential,
χ2
1 and uniform distributions. In all cases, the random variables

are standardized to have the required variances. Results appear in
Table 4.

The effects of departures away from Gaussianity are dramatic.
For the t-Student cases, the empirical sizes of the LM Gaussian-
based statistics are considerably large. Moreover, the simulations

8 Parameters were set as follows: σ 2
µi

= σ 2
µhµ(θµ x̄i), σ 2

νit
= σ 2

ν hµ(θνxit ), θµ ∈

{0, 1, 2, 3}, and θν ∈ {0, 1, 2, 3}.
9 We are grateful to an anonymous referee for pointing out this distribution. We

have used the SN package in R and the rsn command, with a shape parameter
α = 20. This random variable has a kurtosis of 1 and considerable skewness.
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show that rejection rates decrease as degrees of freedom increase,
and thus the DGP becomes closer to normal. Even higher rejection
rates are observed for the log-normal, exponential,χ2

1 and uniform
DGPs. For instance, the log-normal has rejection rates above 0.24
for HGµ, and close to 0.50 for BBPν . However, rejection rates are
close to the nominal level for the skewed-normal distribution
(with considerable skewness but limited kurtosis). These results
are in line with Evans’ (1992) simulations for the Breusch–Pagan
cross-sectional test, which was found to be highly sensitive to
excess kurtosis but less so to skewness.

Interestingly our new test statistics and those of Lejeune’s
(2006) are robust to departures away fromGaussianity, presenting
empirical sizes very close to their nominal values. Surprisingly,
we also find a good empirical size for the t-Student case with
3 degrees of freedom, which has infinite fourth moment, and
therefore, it does not satisfy the assumptions used in the theorems
of Section 3. Finally, all tests derived under Lejeune’s (2006)
framework present good empirical size and are, hence, robust
to distributional misspecifications. Although not reported, in all
cases, the proposed tests have monotonically increasing empirical
power as heteroskedasticity in the tested component augments.

To summarize, the analysis confirms that, although optimal in
the Gaussian case, LM tests derived under this assumption are
severely affected by non-normalities, and that, on the contrary, our
new statistics and those based on Lejeune’s (2006) remain unal-
tered by changes in the underlying distribution of the error terms.

5. An extension: the heterokurtic case

We consider an extension of the tests proposed above to the
case of finite but non-identical fourthmoments, i.e. heterokurtosis.
This is, thus, a generalization of the procedures of Wooldridge
(1990, 1991) and Dastoor (1997) in the cross-sectional case, to the
error components model in panel data. In this case, Assumption 2
should be dropped and the asymptotic results should be modified
to allow for different variances of the conditional squared
residuals. We illustrate this procedure by modifying Theorem 1
(for the tests for heteroskedasticity in the individual component),
which provides a guidance for straightforward extensions for
Theorems 2, 3 and 4.

Recall from Section 3.1 that ¯̂ηi = ¯̂u
2
i . Define

Φ̂µ = diag




¯̂η1 −
1
N

N−
i=1

¯̂ηi

2

, . . . ,


¯̂ηN −

1
N

N−
i=1

¯̂ηi

2
 .

Consider the following assumption, that ensures the existence of
the fourth moments:

Assumption 2′. Let η̄ = {ū2
1, . . . , ū

2
N}, then limN→∞ Var[ 1

√
N
Z′

µMN

η̄] = Ωµ is a finite positive define matrix.
The following theorem provides the asymptotic distribution of

a Wooldridge (1990) type statistic for testing heteroskedasticity
in the individual component with heterokurtosis. The intuition
is that, as argued in Wooldridge (1990, p. 23), the White (1980)
covariance matrix (in our case based on Φ̂µ) can be used
to compute heteroskedasticity tests that are not affected by
heterokurtosis. A similar procedure can be used to construct
tests that are robust to heterokurtosis for all the test statistics
considered in this paper.

Theorem 5. Let λh
µ = σ 4

µh
(1)
µ (0)2δ′

µDµΩ−1
µ Dµδµ. Then, under As-

sumptions 1 and 2, as N, T → ∞ or N → ∞, T fixed and Hσ 2
ν

0 , and

under H
σ 2
µ

A : θµ = δµ/
√
N,

mh
θµ

≡ N × ¯̂η
′

MNZµ(Z′

µMNZµ)(Z′

µMNΦ̂µMNZµ)−1

× (Z′

µMNZµ)Z′

µMN
¯̂η

d
→ χ2

kθµ
(λh

µ).
Proof. The proof follows from Theorem 1 and Dastoor’s (1997)
Theorem 1. �

Interestingly, following Wooldridge (1990, Example 3.2,
p. 32–34) this test can also be implemented in an artificial regres-
sion setup, as N × R2h

µ of the regression of a vector of ones on
( ¯̂η −

1
N

∑N
i=1

¯̂ηi)(zµ −
1
N

∑N
i=1 zµi), where R2h

µ is the uncentered
coefficient of determination of the regression.

Note that this procedure can be extended for a general
variance–covariance matrix of the transformed residual η. In this
case, we could define a general matrix Φ = (Mηη′M) ⊙ A, where
M is a square matrix with the dimension of η (either MN or MNT ),
A is a selector matrix of the same dimension, with 0s and 1s
that indicate which elements are non-zero, and ‘⊙’ denotes the
element-by-element matrix multiplication operator. By imposing
adequate restrictions on the type of dependence, test statistics
that are robust to heterokurtosis and several types of panel
dependences can be constructed.

We conduct a small Monte Carlo experiment to evaluate
the effect of heterokurtosis on our proposed statistics, and the
corresponding heterokurtic-robust modifications based on the
artificial regression setup explained above. We generate 1000
replications under H0 : θµ = θν = 0,N = 50 and T = 5, for non-
normal DGPs with varying kurtosis. We consider 3 different cases.
First, we generate half of the observations with a t-Student with 5
degrees of freedom and half with 10 degrees of freedom. Second,
half with t-Student (df = 5) and half with a log-normal. Finally,
one fifth with t-Student (df = 5), one fifth with t-Student (df =

5), one fifth with t-Student (df = 5), one fifth normal and one
fifth with log-normal. In all cases we use the adjustment explained
in the Monte Carlo section to get the required variances. Results
appear in Table 5. The tests based on homokurtosis have good
empirical size. In general, the Wooldridge-type statistics show
rejection rates below the nominal size of 5%. Overall this suggests
that heterokurtosis may not produce great size distortions.

6. Concluding remarks and suggestions for practitioners

As in the cross-sectional case, heteroskedasticity is likely to
affect panel models as well. A further complication in the standard
error components model is to correctly identify in which of
the two components, if not in both, it is present. Available LM
based tests are shown to have difficulties solving this problem.
First, by relying strictly on distributional assumptions, they are
prone to be negatively affected by departures away from the
Gaussian framework in which they are derived. This paper
shows that this is clearly the case, since alternative distributions
(in particular, heavy-tailed ones) lead to spurious rejections of
the null of homoskedasticity. Second, joint tests of the null of
homoskedasticity in both components, thoughhelpful in serving as
a starting diagnostic check, are by construction unable to identify
the source of heteroskedasticity. More importantly, the marginal
LM test for the individual component rejects its null in the presence
of heteroskedasticity in either component, and hence, cannot help
in identifying which error is causing it.

Our new tests are robust in these two senses, that is, they
have correct asymptotic size for a wide family of distributions and
they have power only in the direction intended for. An extensive
Monte Carlo experiment confirms the severity of these problems
and the adequacy of our new tests in small samples. Our new
tests are computationally convenient, since they are based on
simple algebraic transformations of pooled OLS residuals, unlike
the tests by Baltagi et al. (2006) or Holly and Gardiol (2000) that
require ML or pseudo-ML estimation. Also, the extension to the
case of unbalanced panels is immediate in the case of our tests,
due to the use of simple moment conditions, in contrast with
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Table 4
Empirical rejection probabilities. Size distortions with different DGPs. N = 50, T = 5.

Exponential heteroskedasticity
mµ m∗

µ HGµ Lµ mν m∗
ν BBPν BBP ′

ν Lν mµ,ν BBPµ,ν Lµ,ν

DGP σ 2
µ = 6, σ̄ 2

ν = 2

Gaussian 0.053 0.053 0.039 0.039 0.050 0.092 0.049 0.044 0.042 0.048 0.043 0.033
t3 0.049 0.049 0.207 0.042 0.055 0.083 0.320 0.324 0.049 0.055 0.384 0.042
t5 0.055 0.055 0.105 0.050 0.050 0.086 0.176 0.189 0.047 0.051 0.192 0.052
Skewed-N 0.049 0.051 0.065 0.047 0.056 0.074 0.092 0.088 0.055 0.049 0.091 0.044
Log-normal 0.051 0.050 0.314 0.046 0.054 0.065 0.485 0.500 0.051 0.061 0.590 0.041
Exponential 0.048 0.048 0.177 0.032 0.059 0.072 0.238 0.242 0.043 0.055 0.297 0.031
χ2
1 0.057 0.056 0.275 0.051 0.064 0.080 0.333 0.353 0.048 0.064 0.439 0.039

Uniform 0.055 0.055 0.193 0.049 0.053 0.091 0.013 0.006 0.053 0.051 0.141 0.041

σ 2
µ = 2, σ 2

ν = 6

Gaussian 0.052 0.054 0.042 0.049 0.056 0.056 0.053 0.040 0.046 0.052 0.051 0.042
t3 0.048 0.050 0.153 0.043 0.054 0.052 0.341 0.344 0.046 0.054 0.359 0.049
t5 0.050 0.051 0.077 0.047 0.050 0.052 0.182 0.187 0.046 0.049 0.170 0.045
Skewed-N 0.056 0.057 0.057 0.054 0.054 0.049 0.092 0.087 0.065 0.051 0.088 0.055
Log-normal 0.054 0.054 0.243 0.051 0.054 0.055 0.494 0.496 0.046 0.063 0.543 0.049
Exponential 0.050 0.049 0.115 0.039 0.059 0.052 0.240 0.251 0.049 0.053 0.248 0.033
χ2
1 0.056 0.055 0.166 0.045 0.056 0.048 0.359 0.364 0.046 0.056 0.386 0.051

Uniform 0.057 0.057 0.202 0.050 0.049 0.056 0.011 0.007 0.046 0.050 0.140 0.045

Notes: Monte Carlo simulations based on 5000 replications. Theoretical size 5%.
Table 5
Empirical rejection probabilities. Heterokurtosis. N = 50, T = 5.

Test statistic mµ m∗
µ mh

µ m∗h
µ mν mh

ν m∗
ν m∗h

ν mµ,ν mh
µ,ν

DGP σ 2
µ = 6, σ 2

ν = 2

t5 & t10 0.045 0.043 0.033 0.031 0.045 0.044 0.055 0.050 0.044 0.036
t5 & log−N 0.058 0.054 0.026 0.021 0.058 0.038 0.077 0.054 0.056 0.032
t5 & t7 & t10 & Normal & log−N 0.054 0.059 0.038 0.043 0.070 0.055 0.072 0.068 0.064 0.048

DGP σ 2
µ = 2, σ 2

ν = 6

t5 & t10 0.049 0.048 0.043 0.042 0.050 0.038 0.057 0.049 0.046 0.044
t5 & log−N 0.051 0.052 0.022 0.021 0.057 0.038 0.071 0.053 0.062 0.034
t5 & t7 & t10 & Normal & log−N 0.048 0.052 0.030 0.031 0.054 0.045 0.060 0.056 0.051 0.039

Notes: Monte Carlo simulations based on 1000 replications. Theoretical size 5%.
many other error component procedures whose derivation for
the unbalanced case requires complicated algebraicmanipulations
(see Sosa-Escudero and Bera, 2008, for a recent case). Note that
Lejeune’s (2006) tests allow for unbalanced panels too.

In practice, the use of our new tests will depend on the
hypothesis of interest. Obviously, joint tests are a useful starting
point as a general diagnostic test, since they have correct size
and power to detect departures away from the general null of
homoskedasticity. Marginal tests can be used when the interest
lies in one particular direction, our tests being particularly helpful
in small samples. Additionally, marginal tests can be combined in
a Bonferroni approach, to produce a joint test that is compatible
with themarginal ones (see Savin, 1984, for further details). That is,
compute bothmarginal tests, and reject the joint null if at least one
of them lies in its rejection region, where the significance level for
themarginal tests is halved, in order to guarantee that the resulting
joint test has the desired asymptotic size. This is the essence of the
‘multiple comparison procedure’ in Bera and Jarque (1982).

Regarding further research, this paper focuses mostly on
preserving consistency and correct asymptotic size, with minimal
power losses with respect of existing ML based tests. Power
improvements can be expected from using a quantile regression
framework, as in Koenker and Bassett (1982), which finds power
gains by basing a test for heteroskedasticity on the difference in
slopes in a quantile regression framework, for the cross-sectional
case. The literature on quantile models for panels is still incipient,
though promising (see Koenker, 2004; Canay, 2008; Galvao, 2009),
so further developments along the results of this research line
seem promising.
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