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Volatility is a key ingredient of the risk-return tradeoff that permeates modern financial theories.
Moreover, it is a well-established fact, dating back to Mandelbrot (1963) and Fama (1965), that
financial markets display pronounced volatility clustering. As such, accurate measures and a
thorough understanding of the determinants of the volatility process are critical for issues related to
the functioiling of markets and the implementation and evaluation of asset pricing theories.
However, it is only over the last decade that financial economists have begun to seriously model the
temporal dependencies in return volatility. The majority of these studies rely on formulations within
the Autoregressive Conditional Heteroskedastic (ARCH) class of models pioneered by Engle (1982).
Almost universally, the reported parameter estimates point towards a very high degree of
intertemporal volatility persistence, supposedly underscoring the importance of capturing this
dimension of the return generating process; see, e.g., Bollerslev, Chou and Kroner (1992) and
Bollerslev, Engle and Nelson (1994) for recent surveys. Yet, a number of studies find that, although
the ARCH parameters are highly significant in-sample, the models explain little of the variability in
ex-post volatility as measured by the squared or absolute returns over the relevant forecast horizon;
see, e.g., Cumby, Figlewski and Hasbrouck (1993), Figlewski (1994), and Jorion (1995, 1996)
among many others. Predictably, these rather striking findings have led to the perception that ARCH
volatility forecasts may be of limited practical use.

In contrast, we demonstrate that well-specified ARCH models yield surprisingly accurate
volatility forecasts. While normalized squared or absolute returns over the appropriate horizon
provide unbiased estimates for volatility, the signal-to-noise ratio is diminutive, when evaluations are
conducted over daily time-spans. Consequently, we demonstrate that the apparent poor predictive
power of ARCH models, when judged by standard forecast evaluation criteria, is a natural, indeed
inevitable, consequence of the inherent noise in the return generating process. Building on the
continuous-time stochastic volatility framework developed by Nelson (1990) and Drost and Werker
(1996), we furthermore demonstrate how high-frequency intraday returns allow for the construction
of increasingly more accurate ex-post volatility measurements. When evaluated in this more
appropriate setting, we find that daily ARCH models readily explain about half of the variability in
the latent volatility factor. These findings thus document the importance and practical relevance of
interdaily volatility modeling and forecasting.

Although the general conclusions apply equally well across most ﬁpancial markets and

instruments, our empirical analysis will, for concreteness, focus on the foreign exchange market and
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daily volatility forecasts for the Deutschemark - U.S. Dollar (DM-$) and Japanese Yen - U.S. Dollar
(¥-$) spot exchange rates. Similarly, all our model estimates and theoretical developments are based
on the popular GARCH(1, 1) specification of Bollerslev (1986}, but the qualitative results carry over
to other empirically relevant ARCH and stochastic volatility models.

The plan for the remainder of the paper is as follows. The notation and data sources are set
out in section I. Section II provides a brief empirical illustration of the highly significant ARCH
parameter estimates typically obtained in-sample, coupled with the apparent poor out-of-sample
ARCH volatility forecasting performance. These illustrations are based on a sample of daily DM-$
and ¥-$ exchange rates. Formal theoretical justifications for the empirical findings are developed
in section III within the context of a continuous-time stochastic volatility model. This section also
demonstrates how the use of high-frequency data effectively reduces the measurement error involved
in quantifying the ex-post latent volatility. Utilizing a one-year sample of five-minute returns, the
empirical analysis in section IV highlights how the resulting improved daily volatility measures give
rise to very different conclusions regarding the accuracy of the identical daily ARCH volatility
forecasts for the two exchange rates discussed in section I. Section V concludes with suggestions

for future research,

I. Notation and Data
We let p, denote the time ¢ = 0 logarithmic price for some financial asset, where the unit time
interval corresponds to one day. The discretely observed time series process of continuously

compounded returns with m observations per day, or a return horizon of iI/m, is then defined by,

r(m).t. = P~ Pi-1m- (1)

where ¢t = 1/m, 2/m, ... . In line with this convention, conditional and unconditional expectations
are indexed by the observation frequency of the variables in the information set, and are denoted by
E,, () and E,{(-), respectively, while the corresponding variance operators are given by Var,, ()
and Var,,(-). We further refer to the continuous-time instantaneous returns process by 7, = re,),
= dp,, while the instantaneous variance is denoted o). Likewise, the conditional expectation
adapted to the continuous-time sample-path filtration, o(p,, 7 <¢), is re_ferred to by E,(-), whereas

the corresponding unconditional expectation is denoted E{-). To facilitate comparison, all reported
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population figures and model estimates are scaled to reflect daily percentage returns.

The model estimates underlying the continuous-time simulations are based on daily returns, or
> for the DM-$ and the ¥-$ spot exchange rates from October 1, 1987 through September 30,
1992, Meanwhile, the empirical out-of-sample forecast analysis is based on temporal aggregates of
the five-minute returns, or r ,, for the same two exchange rates from October 1, 1992, through
September 30, 1993. These intraday returns are constructed from the linearly interpolated
logarithmic midpoint of the continuously-recorded bid and ask quotes that appeared on the interbank
Reuters network over the one-year sample. Due to the extremely low market activity over the
weekends, the returns from Friday 21:00 Greenwich Mean Time (GMT) through Sunday 21:00 GMT
are excluded, resulting in a total of 74,880 5-minute returns spanning 260 days. For a more detailed
discussion of the data construction we refer to Andersen and Bollerslev (1997a, 1997b), where the

identical five-minute DM-$ return series is analyzed from a different perspective.

II. Interdaily Volatility Modeling and Forecast Evaluation

The existence of volatility clustering in daily, weekly, or monthly speculative returns has been
extensively documented in the literature. This feature is also evident in figure 1, which plots the
daily returns on the DM-$ and ¥-$ spot exchange rates over the five-year sample. Even though the
returns appear to be serially uncorrelated, the evidence for volatility clustering is ubiquitous, with
both exchange rates exhibiting well-defined periods of relative tranquility and turbulence. This visual
impression is confirmed by the Ljung and Box (1978) portmanteau tests for up to thirtieth-order
serial correlation in the squared returns. The test statistics equal 89.0 and 206. 1, respectively, which
are highly significant in the asymptotic chi-square distribution with thirty degrees of freedom.

A. Daily GARCH(1, 1) Volatility Modeling

Econometric modeling of the volatility clustering has been an active research area in recent
years. Many studies find that the simple GARCH(1,1) model provides a good first approximation
to the observed temporal dependencies; see, e.g., Baillie and Bollerslev (1989), Bollerslev (1987),
Engle and Bollerslev (1986), Hsieh (1989) and McCurdy and Morgan (1988) for some early
evidence. In order to formally define the model, let o7, , denote the conditional variance of 7y,
based on information up through time #- 1/m. With a sampling frequency of m observations per day,
the GARCH(1,1) model for r,, is then given by the following system,
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Loyt ™ Ogma” Zmt (2)
and

o%m),t = ’P(m) + C\E(m)‘(ff(m),t-um'Z(m).t-Um)2 + B(m)'o;(’m),t-lfm (3

where ¥, > 0, oy = 0, B8, = 0, and 7, is i.i.d. with mean zero and variance one.

The parameter estimates for the two daily exchange rates, corresponding to m = I, are reported
in table I.! For none of the rates do we find any evidence of important serial dependence in the
mean. For instance, the portmanteau tests for up to thirtieth-order serial correlation in the
standardized residuals, or Z;,,, equal 33.9 and 39.6, respectively, which are insignificant relative
to the conventional ninety-five percent chi-.square critical value of 43.8. In contrast, the estimates
for the conditional variance parameters are all highly significant, and the robust Wald tests for no
ARCH effects, o, = B, = 0, overwhelmingly reject for both rates. The portmanteau tests for
up to thirtieth-order serial dependence in the standardized squared residuals, 2%1,,“ equal 29.1 and
24.7, indicating that the GARCH(l,1) model does a good job of tracking the short-run interdaily
volatility dependencies. Consistent with the prior literature, the estimates for &, + B(l, are close
to unity, thus approaching the IGARCH(1,1) model of Engle and Bollerslev (1986).%

The high degree of volatility persistence, coupled with the significant parameter estimates,
observed almost universally across different speculative returns, suggest that financial market
volatility is highly predictable. Specifically, consider the GARCH(1,1) model in equations (2) and
(3). Assuming that o, + B, < I, so that the model is covariance stationary, it follows that the

minimum Mean Square Error (MSE) forecast for the conditional variance h-steps ahead is given as,

E(m),t(o%m),t-l-h!m) = oz(m) + (o + 6(m))h ’ ("z(m).t - "%m))’

! The estimates are quasi maximum likelihood (QMLE) under the assumption that z;,. is normally distributed, with
robust standard errors in parentheses; see Bollerslev and Wooldridge (1992). The models also allow for intercepts in the
conditional mean equations, but these estimates are indistinguishably different from zero and consequently not reported.

2 Recent evidence suggest that the Jong-run dependencies in financial market volatility may be better characterized by
a fractionally integrated, or FIGARCH, model; see e.g. Andersen and Bollerslev (1996), Baillie, Bollerslev and Mikkelsen
{1996) and Bollersiev and Mikkelsen (1996). Since the present analysis is focused exclusively on shori-term volatitity
forecasting, we shall not pursue these more complicated specifications any further here.
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where o}, = ¥, - (I - a,, - B4,)" denotes the unconditional one-period return variance. The half-
life of a volatility shock, defined as the time it takes for half of the expected reversion towards the
unconditional variance to occur, therefore equals -log(2) - log(e,, + 8,,)". For the parameter
estimates in table I, this translates into half-lives of 19.8 and 12.9 trading days, respectively.’
Nonetheless, as we confirm in the next section, when judged by standard criteria, the model appears

to provide poor volatility forecasts, even over the immediate one-day-ahead horizon.

B. Duaily GARCH(1, 1) Volatility Forecast Evaluation
The majority of the volatility forecast evaluations reported in the literature'rely on some MSE
criteria involving the ex-post squared or absolute returns over the relevant forecast horizon.* One

particularly popular metric is obtained via the ex-post squared return - volatility regression,

I'%m).t+l.fm = ay + b(m)":"%m),t+l.fm T W+ Ums @

where t = 0, 1/m, 2/m, ... . This regression equation provides an analogue to the commonly used
procedure for evaluating forecasts for the conditional mean.® If the model for the conditional
variance is correctly specified and E,,), (), + 1m) = O+ 1m » it follows that, in population, a,,

and by, equals zero and umnity, respectively.®” Of course, in practice the values for o7, , ,, are

3 These half-lives are actually lower than many previous estimates reported in the literature. This may in part reflect
our reliance on a relatively short five year sample and the associated downward bias in the parameter estimates; see e.g. the
developments in Linton (1997) and Lumsdaine (1995). For instance, on using a longer fourteen year time-span of DM-$
exchange raies and a GARCH(1,1) specification, Andersen and Bollerslev (1997a) report a half-life of 31.2 trading days.

4 Although the MSE may be a natural choice when evaluating traditional model forecasts for the conditional mean, it
is less obvious in a heteroskedastic environment; see, e.g., Bollerslev, Engle and Nelson (1994), Engle et al. (1993), Diebold
and Mariano (1995), Lopez (1995), and West, Edison and Cho (1993). However, for simplicity we do not pursue any of
these more complex non-linear forecast evaiuation criteria here.

3 Following Mincer and Zarowitz (1969), the corresponding procedure for evaluating forecasts for the conditional mean
is frequently referted to as a Mincer-Zarnowitz regression.

6 This assumes that the conditional mean of r,y,  is zero. Otherwise, replace r},,,  in equation (4) by (r.,, - tm ) where
Iy« denotes the conditional mean; Pagan and Ullah (1988) and Pagan and Sabau (1952) analyze the complications that arise
when the conditional mean depends on the conditional variance. However, at the daily horizon, the predictability in the mean
is of second order importance, as exemplified by the results for the DM-$ and ¥-$ exchange rates discussed above.
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subject to estimation error, resulting in a standard errors-in-variables problem and a downward bias
in the regression estimate for b,,,.° Nonetheless, the coefficient of multiple determination, or RZ,,,
from the regression in (4) provides a direct assessment of the variability in the ex-post volatility, as
measured by ri,, . ;m, that is explained by the particular estimates of o, . ,,,. The R, is
therefore often interpreted as a simple gauge of the degree of predictability in the volatility process,
and hence of the potential economic significance of the volatility forecasts.

The use of R? as a guide to the accuracy of the volatility forecasts is, however, problematic.
Financial applications focus on the future volatility and not the subsequent realized squared returns.
Under the null hypothesis that the estimated GARCH(1, 1) model constitutes the correct specification,
the true return variance is, by definition, identical to the GARCH volatility forecast. Thus, under
this scenario the R? simply measures the extent of idiosyncratic noise in squared returns relative to
the mean which is given by the (true) conditional return variance. On the other hand, if the
regression is used as a diagnostic for potential misspecification, then an alternative measure of the
realized return volatility is required. Implicitly, the observed squared returns are used in this
capacity. This is justified to the extent that the squared returns provide an unbiased estimator of the
underlying latent volatility. However, the realized squared returns are poor estimators of the day-by-
day movements in volatility, as the idiosyncratic component of daily returns is large. In other
words, it is unclear how to interpret the resulting R?, unless we establish a benchmark for the value
expeéted under the null hypothesis of correct model specification.’

To illustrate these points, consider the GARCH(1,1) estimates for the daily DM-$ and ¥-$
exchange rates. The RZ(U’S from the one-step-ahead return volatility regressions in (4) for the 260

weekday returns over the subsequent year from October 1, 1992 through September 30, 1993, equal

TA closeiy related regression, |, 4 ym| = Cay T di Timys+ im T Yemyr + 1m » 125 been employed in a number of
studies; see, e.g., Jorion (1995). However, unlike by, the population value of d,, hinges on distributional assumptions.
For simplicity we therefore concentrate exclusively on the squared return - volatility regression in (4) in the present analysis.

8 If the forecasts are unbiased in population, the downward bias in the estimate for by 18 given as - Varg, (vm.o -
[ Varg,(*m.) + Varm, (ot 01", where v, denotes the measurement error in of,,, ; see, e.g., Chow (1983). Christensen
and Prabhala (1997) explicitly recognize this bias within the context of evaluating variance forecasts based on implied
volatilities from options prices.

? The predication on R? as a convenient measure for summarizing predictable changes in returns, and stock prices in
particular, is highlighted by Roll (1988) in his 1987 Presidential Address to the American Finance Association succinctly
entitled "R?".



0.047 and 0.026, respectively.’® These "disappointingly” low RZ,’s are in line with the evidence
in the extant literature for other speculative returns and sample periods.'! For instance, on
evaluating the predictive power of a GARCH(1,1) model for weekly returns on the S&P100 stock
index from 1983-1989, Day and Lewis (1992) report RZ,,5, = 0.039, while Pagan and Schwert (1990)
find R?;,,, = 0.067 with a GARCH(1,2) model for monthly aggregate U.S. stock market returns
from 1835-1925. Jorion (1996) uses the same GARCH(1,1) specification as here, but a longer
seven-year sample of daily DM-$ returns from 1985-1992, to obtain R?u = 0.024. Modeling weekly
stock and bond market volatility in the U.S. and Japan from 1977-1990 by an EGARCH model,
Cumby, Figlewski and Hasbrouck (1993) report R?,,5,’s ranging from 0.003 to 0.106, while West
and Cho (1995) find R?;;’s ranging from 0.001 to 0.045 with a GARCH(1,1) model for five
different weekly U.S. dollar exchange rates from 1973-1989. Closely related results have been
reported by, e.g., Akgiray (1989), Brailsford and Faff (1996), Canina and Figlewski (1993), Dimson
and Marsh (1990), Frennberg and Hansson (1995), Figlewski (1994), Heynen and Kat (1994), Jorion
(1995), Lamoureux and Lastrapes (1993), Schwert (1989, 1990a) and Schwert and Seguin (1990).
Predictably, these systematically low R?,’s reported throughout the literature have led to the
perception that standard ARCH models may be seriously misspecified and provide poor volatility
forecasts, and consequently are of limited, if any, practical use.

To highlight the fallacy of such an inference, we derive the population R* under the null
hypothesis that the returns are generated by a GARCH(1,1) model as in equations (2) and (3).
Letting &gy = Egpy, (Z(m,) denote the conditional kurtosis of the standardized inmovations, it is
straightforward, following Bollerslev (1986), to show that, provided the unconditional kurtosis for

Y my,¢ 18 finite, OF kg -of, + Bhpy + 20y B < I, we have

Var () = Vi (g - 1) (1 - By = 270ty Beay) * (1 = Ky any = By = 27y Biemp) ™!

(- Cmy - B(m) )-2’

18 consistent with the results in table I, all our out-of-sample predictions use daily returns measured at 12:00 GMT.
While the reported figures do reflect the actual definition of the daily return interval, the qualitative conclusions are robust.
For instance, on measuring the daily returns at 0:00 GMT, the one-year out-of-sample R},’s equal 0.021 and 0.012,
Tespectively.

i Whereas the results for the DM-$ and ¥-$ exchange rates reported here are truly out-of-sample, most of the results
reported in the literature rely on in-sample parameter estimates. If anything, this is likely to bias the RZ,,’'s upward.
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and,

Var(m)(o%m),t) = ‘I’%m) * (g - 1)'O‘%m)'(1 - "(m)‘o"%m) - B%m) - 2'O‘(m)'B(m))'1 (1 - oy - B(m))'2 .
Thus, the (true) population R?,, from the regression in equation (4) takes the simple form,
R%m) = Var(m)(o%m).t) ' Var(m)(r%m),: ).l = a%m) ) (1 - B%m) - 2'a(m)’B(m)) -1 B (S)

By the implicit assumption of a finite unconditional fourth order moment underlying the squared
return - volatility regression, the coefficient of multiple determination will- never exceed x],‘;,. In
particular, with conditional Gaussian errors the R?,,,, from a correctly specified GARCH(1,1) model |
is bounded from above by 4, while with conditional fat-tailed errors the upper bound is even lower.
Moreover, with realistic parameter values for oy, and 8, the population value for the R?, statistic
is significantly below this upper bound. In other words, low R”’s are not an anomaly, but rather a
direct implication of standard volatility models.

Consider again the daily DM-$ and ¥-$ GARCH(1,1) parameter estimates for o, and 8, in
table I. The population R%”’s implied by the ex-post volatility regression in (4) equal 0.064 and
0.096, respectively. While these Ri”’s are slightly higher than the actual one-year out-of-sample
statistics calculated above, the values are in close accordance with the in-sample R%,,,,’s reported in
the extant literature.'> Thus, even for a correctly specified model with E , (%% 1+1/m) = Comprsim
it is naive to expect a "high" R%m) from the squared return - volatility regression in (4).

The fact that the daily GARCH(1,1) models for the DM-$ and ¥-$ exchange rates do not explain
much of the variability 1n the squared returns is also evident from figure 2, which graph the 260 one-
day-ahead volatility forecasts from October 1, 1992 through September 30, 1993, along with the
corresponding realized daily squared returns. The variability in 02(”', is diminutive compared to the
variability in rZ;,. It is evident that the low R%,’s largely reflect the inherent noise in the daily

squared returns as a measure for the underlying latent volatility factor. The next section further

12 By ignoring the higher volatility following market closures, the GARCH(1,1) models reported in table I systematicaily
over-estimate volatility on regular trading days, possibly explaining part of the discrepancy between the actual and population
R},,’s; see Baillie and Bollerslev (1989) and Andersen and Bollerslev (1997b) for a detailed analysis of day-of-the-week and
holiday effects in the foreign exchange market. For simplicity, we do not pursue this additional complication here.

8



explores this fundamental issue within the context of a continuous-time stochastic volatility model.

ITII. Continuous-Time Volatility Modeling and Forecast Evaluation

The results of the previous section pose some important challenges. First, while the low R?
measures are consistent with standard volatility models, they do not answer the underlying question
of interest, namely whether these models actally provide valuable volatility forecasts. Second, the
null hypothesis that a GARCH(1,1) model constitutes the true data generating process at the daily
frequency does not provide a convenient analytical framework for an exploration of this issue.
Instead, we adopt a continuous-time diffusion setting in which so-called weak-form GARCH models
apply to all time series obtained by sampling at a fixed frequency from this diffusion. The approach
1s particularly useful because it allows for a straightforward evaluation of interdaily volatility
forecasts. Furthermore, many theoretical asset pricing models and most derivatives pricing theories
are cast in a similar framework.

Specifically, we assume that the instantaneous returns are generated by the continuous-time

martingale,
dp, = o,- dW,,, ' (6)

where W,, denotes a standard Wiener process.”” By Ito’s Lemma, the minimum MSE forecast for

the conditional variance for the one-day returns, or ry,,.; = p,,; - p,, is then readily expressed as,
Et(r%i).tﬂ) = E( j (1) r%+'rdf) = E( j(l) 0%+rdf) = j t!) E, (‘ﬁﬂ)df-

Of course, with time-varying volatility it is generally the case that E,,, (%, ;) # E, (%} ,.;). Thus,
any discrete-time daily ARCH forecast is necessarily inefficient in a MSE sense relative to the
optimal forecast based on the cohtinuous sample path. Furthermore, the earlier discussion of the RZ,,
statistics suggests that this inefficiency may be substantial, seriously questioning the usefulness of

ARCH volatility modeling. Meanwhile, it is evident that the proper assessment of daily volatility

13 Any mean predictability could easily be incorporated into the subseguent analysis, but the assumption of serially
uncorrelated mean-zero returns in (6) greatly simplifies the notation. This assumption is also consistent with the empirical
evidence for the two exchange rates analyzed throughout.



in this setting should be based on § jo7,,dr as opposed to 1%, ;. This is explicitly acknowledged
in the literature on derivative security pricing under stochastic volatility; see, e. g., Hull and White
(1987), Melino (1994), Scott (1987) and Wiggins (1987). The relevant gauge on the precision of
daily ARCH volatility forecasts is therefore also given by the former statistic.

A. Continuous Time GARCH(1,1) Volatility Modeling
In our setting, the natural continuous-time model for the volatility process is given by the

diffusion limit of the GARCH(I, 1) process, as developed in Nelson (1990).!* It takes the form,
do! = f(w-od)-dt + 2AO" 2-dW,,, N

where w > 0,8 > 0,0 < N < I, and the Wiener processes, W,, and W, ,, are independent.

While the exact discretization for stochastic volatility models typically are not available in closed
form, it follows from Drost and Nijman (1993) and Drost and Werker (1996) that returns obtained
by discrete sampling from the system defined by the equations (6) and (7), r,,, = p, - P,.;m. satisfy
the weak GARCH(1,1) model restrictions,

g%m).t = Ym + a(m)'r%m).t-lim + B(m)'C%mJ,t-Um, ' : 8)

where ¢Z, , refers to the linear projection of r,,, on the Hilbert space spanned by 1, 7 .. 1imr Ty r.20m
cooand ¥ s Py oms -~ - Although the formal interpretations differ, the recursions for the weak
GARCH model defined by (8) and the conditional variance in (3) obviously result in identical
numerical values for ¢Z, , and o, ,. We therefore refer to the one-day-ahead weak GARCH(1, I)
projections as o ,, instead of ¢Z, , in the sequel. However, insofar as E;,, (%,,) # o%;,, the
results for the daily GARCH(1, 1) forecasts provide only a lower bound on the predictability afforded
by higher order discrete-time ARCH approximations. Nonetheless, given the weak GARCH(L, 1)
interpretation of the diffusion approximation in (8), more complicated stochastic differential equations

should at best result in minor improvements relative to the findings below.

' Note, however, that many other properly designed ARCH filters will yield consistent estimates for the same o, process
as the sampling frequency increases; see Nelson (1996) and Nelson and Foster (1994).
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The exact one-to-one relationship between the discrete-time weak GARCH(1, 1) parameters and

the continuous-time stochastic volatility parameters in equation (7) is conveniently expressed by,
0 = -m-log(ay, + Bm)s ®

@ = M- Y (1 - ag,- B(m))-la (10

and

A= 2 Qi lng(a(m) + B(m)) [l - B(m)' (a(m) + B(m) K
{[1 - (a(m) + B(m) )2] “(1- B(m) )2 = Q) * [1 - B(m)' (a(m) + B(m) )] (11)
[6- log(ag, + B(m)) + 2 logl(a(m) + Bmy) +4-(1- Q) - B(m) )]}1 .

Equation (9) implies that lim,,, . (&, + B, = I, so the weak GARCH(1, 1) model converges to the
IGARCH(1,1) case of Engle and Bollerslev (1986) as the sampling frequency increases. This
diffusion approximation therefore'provides a possible rationale for the widespread empirical findings
of apparent IGARCH behavior, as originally argued in Nelson (1990).

The continuous-time parameters implied by the daily, or m = 1, GARCH(1, 1) estimates for the
exchange rates reported in table I above, are listed in table II. These parameters correspond quite
closely to those implied by the daily GARCH(!,1) estimates in Baillie and Bollerslev (1989) over
the earlier 1980-85 sample period for the same exchange rates, as reported in Drost and Werker
(1996). The parameters in table II are also in line with the results reported elsewhere for other
stochastic volatility models and alternative estimation procedures; see, e.g., Andersen (1994),
Jacquier, Polson and Rossi (1994), Shephard (1996) and the collection of papers in Rossi (1996).
As such, the findings based on the particular diffusion parameterizations in table II serve as a
realistic gauge on the degree of predictability afforded by daily discrete-time ARCH approximations

to the continuous-time specifications typically employed in the theoretical asset pricing literature. '

15 While continuous-time diffusions provide a convenient framework for asset pricing, the specifications in (6) and (7)
ignore pertinent market microstructure features. For instance, non-synchronous trading induces negative serial correlation
in individual returns, whereas index returns become positively correlated. Similarly, the bid-ask spread on organized
exchanges, as well as the systematic positioning of quotes in dealer markets, cause the observed returns to be negatively
serially correlated. Moreover, the return variances differ over trading versus non-trading periods, and there are pronounced
intraday volatility patterns in financial markets. Finally, several studies argue for the simultaneous incorporation of jumps
and time-varying volatility in continuous time models. While it is of interest to pursue the specification of richer continuous-
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B. Temporal Aggregation and Continuous Time GARCH(1,1) Volatility Measurement

We have established that the relevant gauge for the performance of daily volatility forecasts is
given by §; o7, dr. Although the corresponding daily squared returns, r%,,.,, constitute an
unbiased estimator of this quantity, it is also an extremely noisy estimator. Specifically, for the
diffusions in table II, the population values of E[( | joZ,, dr - r%y,.;)? ] equal 1.138 and 0.842,
respectively, while the variances for the one-day-ahead latent volatility factor, Var( § } o, dr),
equal 0.166 and 0.191. The latter are thus orders of magnitude less than the corresponding MSE’s
for the daily squared returns.'®

To further illustrate the pitfalls in using the squared daily returns for ex-post volatility forecast
evaluation, consider the following decomposition of the ideal one-day-ahead latent volatility forecast
error for the GARCH(1,1) model, '

El(oty,:- §00t1.,dD2) = El(oty, - 1iy)?] + E[(hy, - §§0%a.,d0°%]
(12)
+ 2-E [(0%1),: - r%l).t) ! (1%1),: - j (1)021—1+rd7)] .

The prediction error calculated in practice using squared daily returns is given by the first term on
the right-hand-side of equation (12). For the diffusions in table II, this term equals 1.221 and 0.944,
respéctively. In contrast, the ideal MSE for each of the daily weak-form GARCH(!,1) models,
given by the left-hand-side of equation (12), equal 0.084 and 0.097. This glaring discrepancy
reflects the impact of the measurement error, comprised of the second and third term on the right-
hand-side of equation (12). Thus, whereas the population RZ,’s from the daily squared return-
volatility regressions in equation (4) suggest that the true GARCH(1, 1) model only explains between

five and ten percent of the daily variability, when measured by the more appropriate statistic

time stochastic \?olatility models that accommodate all of the above features, this is well beyond the scope of the present
analysis. See Goodhart and O'Hara (1997) for a recent survey of the relevant empirical literature,

16 The numbers reported here, and throughout the remainder of the paper, are based on numerical simulations of the
continuous-time model in equations (6) and (7) using a standard Euler discretization scheme; i.e., p,, = p, + 6y A% w,, and
0Foa = 0wd + o(1-0A + [2N0AF*w,, ), where w,, and w,, denote independent standard normal variables. In the
actual implementation we took A = 1/2,880, corresponding to 10 observations per five-minute interval, while the N(0,1)
random variables were generated by the RNDNS routine in the GAUSS computer language. The sample size was fixed at
1,000,000 "daily" observations, which along with the use of antithetic variates based on -w,, and -w,,, was deemed sufficient
to reduce the sampling variation beyond the reported decimal points for all relevant summary statistics; see Geweke (1995)
for a recent discussion of simulation-based methods in econometrics.
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Ry = 1 - E[(dhy,- [t dn?]-Var( §}o?,,dr)", (13)

both of the weak GARCH(1,1) models account for close to fifty percent (1 - 0.084/0.166 = % and
1-0.097/0.191 = %) of the variance in the one-day-ahead volatility factors. These findings
underscore the importance of proper ex:post evaluation criteria when judging the quality of volatility
forecasts. _

Of course, in practice the sample path realization for the volatility process is inherently
unobservable, rendering the ex-post sample equivalent of the R%, . statistic in equation (13)
infeasible. However, if the discretely sampled returns are serially uncorrelated, and the sample path

for g, is continuous, it follows by Ito’s Lemma that,
limm—-m E([ I {1J°2:+rd7 - Ejzl,..,mr%m).u-jimlz) = 0. (14)

This observation suggests that the use of high-frequency intréday returns may greatly improve the
ex-post volatility measurement, in turn resulting in more meaningful volatility forecast evaluations.

To illustrate, consider again the measurement errors for the two continuous-time diffusions, or
E(f §io?.,dr-Eiy nPmiiml’ ), Teported in table III. As previously noted, with daily returns,
or m = I, the measurement errors equal 1,138 and 0.842. However, increasing the sampling
frequency to eight hours, or m = 3, lowers the measurement errors to 0.381 and 0.289. Further
reducing the length of the return interval to one hour, or m = 24, yield (.048 and 0.036,
respectively. For the five-minute returns, or m = 288, the measurement errors of 0.004 and 0.003,

are both less than 2.5 percent of the daily variability in the latent volatility factor.!?-!8

7 Note that the measurement errors are almost perfectly inversely related to m. Hence, the findings effectively extend
the theoretical developments in Merton (1980), which show that the variance of the sample variance of a homoskedastic
diffusion is inversely related to the sampling frequency, whereas the accuracy of the estimate for the drift in the logarithmic
price process only depends on the span of the data. A similar idea for more efficiently estimating the daily volatility of a
homoskedastic diffusion allowing for measurement noise in the observed high-frequency price process has been explored by
Zhou (1994). The results in table IIl may also be seen as a practical guide to the applicability of the continuous-record
asymptotics for rolling regressions formally developed by Foster and Nelson (1996).

18 While high-frequency intradaily data have only recently become readily available, intraday high-low prices - the
intraday range - have long been recorded daily for some equity markets. Given the availability of these statistics Garman
and Klass (1980), Parkinson (1980), Ball and Torous (1984), and Kunitomo (1992), among others, argued for the use of the
intraday range in order to develop more accurate daily volatility estimates for homoskedastic diffusions, while the properties
of extreme value estimators in continuous-time models allowing for jumps are anaiyzed by Rogers and Satchell (1991) and
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Motivated by these findings, consider the one-day-ahead squared return - volatility regression
obtained by replacing the squared daily returns on the left-hand-side of equation (4) with the sum of

the corresponding squared intraday returns,

2 =
Ej'—'l,..,mr(m),t+j1’m - a(l)m + l:)(I)m'o%l)l,t+1 + Wiim,t+1 5 (15)

where ¢t = 0, 1, 2, ..., and by definition a,,), = ag;, by, = by, and uy); ., = Ug,,.,. Irrespective
of the sampling frequency m, if the model for the conditional variance is correctly specified, the
population values of a,, and b, equal zero and unity, respectively.'® However, the more precise
ex-post volatility rﬂeasurements afforded by the high-frequency intraday returns allow for more
meaningful qualitative assessments of the daily volatility forecasts, o7;;,,,, when judged by the
resulting coefficient of multiple determination, say R?I)m'

The numerical results for the two continuous-time diffusions are reported in table IV. The
R%,;’s again indicate that the weak GARCH(1,1) forecasts explain little of the ex-post variability.®
Meanwhile, the population R%,,’s increase monotonically with the sampling frequency to the much
larger R?,,,’s defined in equation (13). For instance, using the sum of the hourly squared returns
on the left-hand-side of equation (15), the R?;,,’s equal 0.383 and 0.419. Reducing the return
interval to five-minutes result in R%;,¢.'s of 0.483 and 0.488, both of which are extremely close to
the ideal R%;,,"s of 0.495 for each of the rates. These findings highlight the advantage of using high-

frequency intraday returns in the construction of interdaily volatility forecast evaluation criteria.

Maheswaran (1996). Meanwhile, the time-series models estimated in Hsieh (1993) show that the empirical distribution of
the intraday range is strongly time-varying. Although the high-low range is not an unbiased estimator for the latent volatility
over the day, it follows by numerical simulation, that the MSE for the correspondingly scaled unbiased estimator,
Efty fmaxy o Pri, - Miftgg i ]~ § 502, dr)¥], equal 0.103 and 0.114 for the two stochastic volatility models in table II.
Thus, compared to the measurement errors reported in table III, this puts the accuracy of the high-low estimator around that
afforded by the intraday sample variance based on two- or three-hour returns.

19 The same errors-in-variables problem that plagues the estimation of by, in equation (4) will result in a downward bias
in the estimate for by, formally given by -Varg,(vy,) - [Varg,(vy,) + Varg, (e, It .

20 Note that the numerical values for the R?,,,’s from the daily weak GARCH(1,1) approximations in table I'V are slightly

lower than the implied R?,,’s from the daily strong GARCH(1,1) model with the same conditional variance parameters which,
by equation (5), equal 0.064 and 0.096, respectively.
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IV. Intraday Returns and Interdaily Vblatility Forecast Evaluation

The computation of daily return variances from high-frequéncy intraday returns parallels the
use of daily returns in calculating monthly ex-post volatility, as exemplified by Schwert (1989,
1990a) and Schwert and Seguin (1990). The idea has also .been applied by, among others, Hsieh
(1991) and Schwert (1990b) for measurement of daily equity market volatility from sample standard
deviations of intraday returns.”’ However, the connection between ARCH volatility modeling and
forecasting on the one hand and the ex-post volatility measurements on the other has hitherto not
been explored. We now turn to the prz;ctical application of this relation in the context of evaluating

~ the out-of-sample volatility forecasts from the daily GARCH(1,1) models discussed in section IL.

A. Improved Daily GARCH(1,1) Volatility Forecast Evaluation

Direct interpretation of the low R?,’s for the one-day-ahead GARCH(1,1) DM-$ and ¥-$
volatility forecasts suggests that the models perform very poorly, explaining less than five percent
of the ex-post variability in either rate. However, increasing the sampling frequency of the ex-post
squared returns on the left-hand-side of equation (13), the fallacy of this conclusion becomes evident.
For instance, with an hourly sampling frequency the two R7;),,’s reported in table V equal 0.331 and
0.237, respectively. The reduction in the measurement error is also apparent in figure 3, which
graphs the one-step-ahead volatility forecasts, ¢7;), ,,;, along with the ex-post volatility based on the
hourly returns, X, "%24),r+;/24- Clearly, the sum of the hourly squared returns correlates much
more closely with the daily GARCH(1,1) predictions than do the squared daily returns in figure 2.
Further increasing the sampling frequency results in still higher correlations, with R%,45’s at the five-
minute level of 0.479 and 0.392, respectively. The latter statistics signify more than a ten-fold
increase in the explanatory power of the GARCH(1,1) models relative to the inference based on the

conventional R?,,’s reported in the literature. Figure 4 underscores the point.”

Except for a few
isolated episodes, the one-day-ahead GARCH(1,1) predictions do a remarkable job of tracking the

ex-post volatility in both markets.

21 The estimation of standard time series models for these ex-post volatility measures generally confirm the very high
degree of intertemporal volatility dependencies documented in the ARCH literature.

22 A similar figure for the scaled absolute DM-$ returns and standard deviations is contained in Andersen and Bollerslev
(1997h), where the volatility measurement technique formally justified here has been used in the analysis of news and calendar
effects in the foreign exchange market.
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The close correspondence between the implied continuous-time GARCH(1,1) predictive Rﬁ,)m’s
in table IV and the actual empirical results for the DM-$ rate in table V is particularly noteworthy.
It suggests that the market microstructure rigidities and pronounced intraday volatility patterns not
accominodated by the continuous-time process in equations (6) and (7) effectively are annihilated at
the daily level. Moreover, it indicates that the simple GARCH(1,1) model does a good job of
characterizing the volatility clustering for the DM-$ rate over the ex-post sample period. Meanwhile,
the out-of-sample RZ,,’s for the ¥-$ rate in table V are all slightly below the corresponding
theoretical values for the ¥-$ diffusion in table IV. However, the discrepancy between the empirical
and theoretical ¥-$ results is in part attributable to a few pronounced appreciations that occurred
during the out-of-sample period.* Eliminating the two largest ex-post volatility measures, that are

readily recognized in figure 4.B, the value of R, ,,, for the ¥-$ rate increases from 0.392 to 0.456.

V. Concluding Remarks

Numerous studies in the empirical finance literature have suggested that ARCH models provide
poor volatility forecasts. Contrary to this widespread perception, both the theoretical and empirical
analysis in this paper demonstrate that for empirically relevant ARCH specifications the forecasts
correlate closely with the future latent volatility factor that is relevant for most applications, typically
accounting for close to fifty percent of the variability in ex-post volatility. Yes, ARCH models do
provide good volatility forecésts!

Several important questions remain. First, it is of interest to further explore the role of model
misspecification. The formal conditions developed by Nelson (1992) and Nelson and Foster (1997)
pertaining to the use of misspecified ARCH models in forecasting, along with the robustness results
in Nelson and Foster (1994), should provide a useful guide for future work along these lines.
Furthermore, when extending the forecast horizon beyond one day, issues related to the proper
modeling of the long-term volatility dependencies become especially important; see, e.g., Baillie,
Bollerslev and Mikkelsen (1996).

Our main results hinge on the effective use of frequently sampled data in constructing more
accurate ex-post volatility measurements. A closely related question pertains to the precision of the

volatility forecasts as a function of the sampling frequency. Do the additional costs and

2 An analysis of the economic determinants behind these large rate changes is beyond the scope of the present paper.
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complications in model construction and data gathering warrant the use of intraday data for volatility
forecasting as well? The decomposition of the volatility into short- and long-lived volatility
components along with distinct calendar effects proposed by Andersen and Bollerslev (1997b) may
be helpful in quantifying the relevant tradeoff inherent in this important practical problem.

The volatility forecasts analyzed above are based solely on ad-hoc time-series models. There
is a voluminous literature on alternative ways in which to extract information about the latent
volatility factor from sources other than, or in addition to, the corresponding squared or absolute
returns. They include implied volatilities extracted from options prices, as in the recent work of
Canina and Figlewski (1993), Jorion (1995) and Lamoureux and Lastrapes (1993), along with
information provided by the joint distribution of return and trading volume, as in the work by
Andersen (1996) and Gallant, Rossi and Tauchen (1992). The evaluation criteria proposed here
should allow for more meaningful comparisons of these structural methods for estimating volatility.

Most of the volatility forecast comparisons in the literature rely on some variant of the squared
return - volatility regression utilized here. While such evaluation criteria may be natural when
evaluating forecasts for the conditional mean, it is less obvious when evaluating volatility forecasts;
see, e.g., the discussion in Engle et al. (1993), West, Edison and Cho (1993) and Lopez (1995).
Our results suggest that further analysis along these lines may benefit from the use of high-frequency

data. We leave all of these issues for future research.
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Table I
Daily GARCH(1,1) Model Estimates

DM-$ ¥-3$
Yo 0.022 0.026
(0.009) (0.008)
(0.016) (0.026)
Buy 0.898 0.844
(0.023) (0.032)

The table reports Quasi Maximum Likelihood estimates
{QMLE) for the GARCH(1,1) model defined in equation (3)
based on the daily percentage returns for the Deutsche mark
- dollar and yen - dollar spot exchange rates from October 1,
1987, through September 30, 1992. The QMLE are
obtained under the assumption of conditional normality.
Robust standard errors, as described in Bollerslev and
Wooldridge (1992), are reported in parentheses.

Table II
Implied Continuous Time GARCH(1,1):
Model Estimates

DM-$ ¥-$
9 0.035 0.054
@ 0.636 0.476

A 0.296 0.480

The table gives the parameters for the continuous-time
stochastic volatility model defined by equations (6) and (7)
implied by the discrete-time daily GARCH(1,1) model
estimates reported in table I. The formal relationship
between the continuous- and discrete-time parameters is
detailed in equations (9), (10) and (11).



Table HI
Implied Continuous Time GARCH(1,1):
Volatility Measurement Errors

m DM-$ ¥-$

1 1.138 0.842
3 0.381 0.289
24 0.048 0.036
288 0.004 0.003

The table reports the measurement errors using the sum of
squared intraday returns as a measure for the true daily
latent volatility; i.e., E({ | §o?.,d7 - Biay n i J*)-
The returns are generated by the stochastic volatility model
in equations (6) and (7) at the parameter values in table II,
The aggregation frequencies for m = 1, 3, 24, 288,
correspond to daily, 8-hours, hourly, and 5-minute returns,
respectively. The numbers are computed by simulation
using antithetic variates and 1,000,000 "daily" observations,



. Table IV
Implied Continuous Time GARCH(1,1):
Predictive R¥'s

m DM-$ 1-$

1 0.063 0.089
3 0.151 0.198
24 0383 0.419
288 0.483 0.488
o 0.495 0.495

The table reports the population R? from the squared return -
volatility regression in equation (15); i.e., R}y, =1 -
Varg(Zizy,.m r%m),t+jlm - O ) Yargy(Biey m r%m).t+jim)-1-
The returns are generated by the stochastic volatility model
in equations (&) and (7) at the parameter values in table II.
The daily GARCH(1,1) forecasts, o7,y .4, » are based on
equation (3) with m = 1 and the parameter values in table
I. The rows labelled m = 1, 3, 24, 288 correspond to
daily, 8-hours, hourly, and five-minute returns,

respectively. The last row gives the population R}, = 1 -
Var( § §oly,d7-0fy,e ) Var( | gois,d7)". The figures are
calculated by simulation using antithetic variates and
1,000,000 "daily" observations.



Table V
Daily GARCH(1,1) Predictive R*’s

m DM-$ ¥-$

1 0.047 0.025
3 0.133 0.095
24 0.331 0.237
288 0.479 0.392

The table reports the R?, or R%;,, , from the squared return -
volatility regression in equation (15). The returns are
calculated from continuously recorded quotations for the
Deutsche mark - dollar and yen - dollar spot exchange rates
from October 1, 1992, through September 29, 1993.
Quotes from Friday 21:00 GMT through Sunday 21:00
GMT are excluded, resulting in a total of 260 weekdays, or
74,880 observations for the five-minute return interval. The
daily GARCH(1,1) volatility forecasts, o, ., , are based
on equation (3) with m = 1 evaluated at the parameters in
table I. The rows labelled m = 1, 3, 24, 288 give the
results for daily, 8-hours, hourly, and five-minute sampling
frequencies, respectively.



FIGURE LEGENDS

Figure 1.
The figure plots the daily percentage returns on an open position in the two spot foreign

exchange markets from October 1, 1987 through September 30, 1992. Panel A graphs the
returns for the Deutsche mark - dollar rate, whereas panel B graphs the daily yen - dollar rate.

Figure II.
The solid line in the figure graphs the daily one-step-ahead GARCH(1, 1) volatility forecasts,
Otiy.+1» EiVEN by equation (3) with m = 1 and the parameter values in table 1. The dotted line

gives the corresponding realized daily squared returns, rf,,,. The results for the Deutsche mark -
dollar and yen - dollar rates are given in panels A and B, respectively.

Figure II1.

The figure is identical to figure II, except that the dotted line graphs the daily sample variance
based on hourly returns; i.e., Tj_; 24 T{24y.0+j24 -

Figure IV.

The figure is identical to figure II, except that the dotted line graphs the daily samnple variance
based on five-minute returns; i.e., Ej=l,..,288 r%zgg),t.;.jmgg.
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Figure 2.A
Daily DM=$ Volatility
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Figure 2.B
Daily Yen—% Volatility
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. Figure 3.A
Daily DM-$ Volatility.
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Figure 3.B
Daily Yen=% Volatility

~ ——— GARCHI{1,1) Forecast
— — — - Sum of Hourly Squared Returns

0 30 60 90 120 150 180 210 240



Figure 4.A
Daily DM-$ Volatility
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Figure 4.B
Daily Yen=% Volatility
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