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1. Introduction

Recent advances in information technology now make it possible to access in real time, at a
reasonable cost, literally thousands of economic time series for major developed economies.
This raises the prospect of a new frontier in macroeconomniic forecasting, in which a very large
number of time series are used to forecast a few key economic quantities such as output or
inflation. Time series models currently used for macroeconomic forecasting, however,
incorporate only a handful of series: vector autoregressions, for example, typically contain a
half-dozen to one dozen variables, rarely more. Although thousands of time series are available
in real time, a theoretical framework for using these data for time series forecasting remains
undeveloped.

This paper addresses the problem of forecasting a single time series using a very large
number of predictors, potentially many more predictors than dates at which the time series are
observed. Our approach is motivated by the diffusion indexes developed by business cycle
analysts at the National Bureau of Economic Research (NBER). These indexes are averages of
contemporaneous values of a large number of time series; a classic use of a diffusion index is
to measure whether a recession or expansion is widespread throughout the economy. Because it
is an average of many variables, a diffusion index summarizes the information in a large
number of economic time series. In constructing diffusion indexes, NBER business cycle
analysts exercised expert judgment to identify the series and the weight placed on each series in
the index.

Section 2 provides a probability model in which diffusion indexes are interpreted as
estimates of the unobserved factors in a dynamic factor model, and discusses the estimation of

these factors. This dynamic factor model has several important features. First, because



empirical evidence suggests that time variation in macroeconomic relations is widespread (e.g.
Stock and Watson [1996]), the factor loadings are permitted to evolve over time. Second, the
factor structure is approximate, in the sense that the idiosyncratic errors can be correlated across
series. Third, the model is nonparametric, in the sense that the correlation structures and
distributions of the idiosyncratic terms and the factors, and the precise lag structure by which
the factors enter, are not specified parametrically. Fourth, a practical concern when working
with a large number of time series is that a large break or outlier arising from a data entry
error or a redefinition might go undetected, and this possibility is introduced into the analysis.
Fifth, because economic time series are typically available over different spans, the model and
estimation procedures are developed for the cases of both a balanced and unbalanced panel.

This factor-based approach to forecasting can be contrasted to conventional regression-based
model selection. With a very large number of predictor variables, it is computationally
infeasible to enumerate and to estimate all possible models up to a given order. Although this
computational problem can be ameliorated by making informed choices about the models to be
estimated, more fundamentally the model selection approach is prone to producing particularly
poor out of sample forecasts because of fitting so many models. In contrast, the dynamic factor
model places very strong restrictions on the joint behavior of the predictors that permits
extreme parameter reduction, so that for forecasting purposes the very many predictors can be
replaced by a handful of factors.

Asymptotic results are presented in Section 3. The asymptotic framework is motivated by
the application to macroeconomic forecasting. Because the number of time series (N) far
exceeds the number of observation dates (T), N and T are modeled as tending to infinity, but
T/N — 0. Because macroeconomic theory does not clearly suggest finitely many factors, the
number of factors (r) is treated as tending to infinity, but much more slowly than T. Because r

is not known, the number of estimated factors (k) is not assumed to equal the number of true



factors. In this framework, it is shown that, if k=, the estimated factors are uniformly
consistent (they span the space of the true factors, uniformly in the time index). Given this
result and some additional conditions, it is then shown that, if k=r, an information criterion will
consistently estimate the number of factors entering the forecasting equation for the variable of
interest, and the resulting forecasts are as efficient asymptotically as if the true factors were
observed. These theoretical predictions are examined in and supported by a Monte Carlo
experiment reported in section 4.

In section 5, these methods are used to produce monthly forecasts of the twelve-month
growth of industrial production (IP) and the twelve-month growth of the consumer price index
(CPI) in the United States. The full data set spans 1959:1-1997:9. Factors are extracted and
forecasts are made for a balanced panel of 170 time series and an unbalanced panel of 224 time
series. These diffusion index forecasts perform well in a simulated real-time forecasting
comparison with several state of the art benchmark multivariate models.

This research is related to two bodies of literature. The first is a relatively small literature
in which dynamic factor models have been applied to macroeconomic data. Geweke (1977) and
Sims and Sargent (1977) analyzed these models in the frequency domain for a small number of
variables. Engle and Watson (1981), Sargent (1989), and Stock and Watson (1991) estimated
small-N parametric time domain dynamic factor models by maximum likelihood. Quah and
Sargent (1993) used the EM algorithm to extend this approach to a moderate number of series
(N=60). The second related literature is the large body of work that uses approximate factor
structures to study asset prices. Contributions include Chamberlain and Rothschild (1983),
Connor and Korajezyk (1986, 1988, 1993), Mei (1993), Schneewwiss and Mathes (1995), Bekker
et. al. (1996), Geweke and Zhou (1996), and Zhou (1997); also see the survey in Campbell, Lo
and McKinley (1996, chapter 6)).

The work in these literatures most closely related to the present paper is by Connor and
Korajczyk (1986, 1988, 1993) and Forni and Reichlin (1996, 1997, 1998); both consider the
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determination of the number of factors and their estimation in large systems. Working within a
static approximate factor model that allows some cross-sectional dependence among the
idiosyncratic errors, Connor and Korajezyk (1986, 1988, 1993) show that factors estimated by
principal components are consistent (at a given date) as N->oo with T fixed. They apply their
methods to evaluating the arbitrage pricing theory of asset prices. Forni and Reichlin (1998),
working with a dynamic factor model with mutually uncorrelated idiosynchratic errors, show
that cross sectional averages consistently estimate a certain scalar linear combination of the
factors. They use this insight in Forni and Reichlin (1996, 1998) to motivate heuristically a
dynamic principal components procedure for estimating the vector common factors and for
studying the dynamic properties of the factors. Forni and Reichlin (1997) suggest an alternative
estimator, which they motivate by dynamic principal components, although no proofs of
consistency of the estimated factors are provided.1 In the first applications of this large cross
section approach to macroeconomic data, they apply their methods to large regional and sectoral
data sets, for example Forni and Reichlin (1998) analyze productivity and output for 450 U.S.
industries.

Relative to this literature, the current paper makes four main methodological contributions,
which are motivated by our focus on real-time economic forecasting. First, consistency of the
estimated factors is shown when the factor loadings are time varying and the number of factors
tends to infinity. Second, the estimated factors are shown to be uniformly {in the time
subscript) consistent, not just for a given date, and rate of consistency is given. Third,
estimation methods that are computationally feasible for large N are presented for both balanced
and unbalanced panels. Fourth, results are given on the use of information criteria to select the
number of factors for forecasting. The empirical contribution of this paper is to demonstrate
the potential for substantial improvements in macroeconomic time series forecasts using these

methods.



2. The Model and Estimator

2.1. The model

Let y, be a scalar time series variable and let X, be a N-dimensional multiple time series
variable. Throughout, y, is taken to be the variable to be forecast while X is the vector time
series variable that contain useful information for forecasting y, , - Itis assumed that X, can

be represented by the factor structure,

@2.1) X, = AF, + ¢

where F, is the r x 1 common factor and e, is the N x 1 idiosyncratic disturbance. The
idiosyncratic disturbances are in general correlated across series and over time; specific
assumptions used for the asymptotic analysis are given in section 3.

Our main objective is to estimate E(y; 4 { | Xy). We model y ,  as,

2.2) Vi1 = B Fr T

where E(€; 4 ¢ lXt’yt’ﬁt’Xbl’yt—l’Bt—l"')20' This embodies three assumptions: that

E(yt+l \Xt,yt,ﬁt,Xt_l ,yt_l,Bt_l...) depends Ft but not otherwise on Xt; that lags of Ft do not
enter (2.2); and that lags of y, do not enter (2.2). This first assumption is the key assumption
that permits the dimension reduction necessary for handling very large X,. The second
assumption is not restrictive, because F, in (2.2) can be reinterpreted as including lags without
changing any essential argument. The third assumption also is not restrictive in the sense that
¥i4 1 can be reinterpreted as a quasidifference so that lagged values of y, can be incorporated

into the model.



The factor loadings A, (N xr) and the coefficients 8, (rx1) vary over time according to,

(24) ‘Bt = BI—I + nt

where h is a diagonal N xN scaling matrix and 7, and {; are, respectively, rx1 and NXr stochastic
disturbances. Specific assumptions about h are stated in section 3.

Depending on what further assumptions are made concerning the disturbances and the factor
loading matrices, this model contains several important special cases. One is the static factor
model in which the factor loadings are constant (so At:AO), e is serially uncorrelated, Ft and
{ejt} are mutually uncorrelated and are i.i.d.. Ife; and € are independent for i#j, the model
is referred to as an exact static factor model. If the idiosyncratic disturbances are weakly
correlated across series, the model is an approximate (static) factor model (cf. Chamberlain and
Rothschild (1983) and Connor and Korajezyk (1986, 1993)).

Another important special case of (2.1)-(2.4) is the dynamic factor model without time
variation, as has been studied by, among others, Geweke (1977), Sargent and Sims (1977), Engle
and Watson (1981), Sargent (1989), Stock and Watson (1991), and Quah and Sargent (1993). In
the standard dynamic factor model, dynamics are introduced in three ways: the factors are
assumed to evolve according to a time series process; the idiosyncratic error terms are serially
correlated; and the factors can enter with lags (or, in general, leads).

By suitable redefinition of the factors and the idiosyncratic disturbances, the dynamic factor

model can be rewritten in the form (2.1) with A, constant. To see this, let Z, denote a nx1

vector of time series variables which are assumed to satisfy the dynamic factor model,

2.5 Zy = oLy + vy,



.. 2
(2.6) gi(Lviy = Mp Myt i.i.d. N(0,0})

for i=1,...,n, where ft is a vector of factors and L is the lag operator. In the econometric
literature using dynamic factor models, {#.} and {n), i=1,...,n are taken to be mutually
independent. Let cr;(L) have order q and let g;(L) be a finite order lag polynomial with roots
outside the unit circle. (Typically normality of these disturbances is further assumed to
motivate using the Kalman filter to compute the maximum likelihood estimates of the factors.)
The model is completed by making an additional assumption specifying the stochastic process
followed by the factors, such as a Gaussian vector autoregression, where the factors are
distributed independently of {v;}.

There are at least two ways to rewrite this model in the form (2. 1) with time invariant
parameters. The first is to let X; = Z, F, = (f, i-l""fi—q)” A= (agoy ... ocq), and e,
= V. With these definitions, (2.5) and (2.6) are equivalent to (2.1), where the idiosyncratic
errors e, are serially correlated, Ft has dimension r=dirn(ft) x(q+1), and AtzA. In this
representation, the factors F, are dynamically singular in the sense that the spectral density
matrix of Fy has rank dim(f,).

Another way to rewrite (2.5) in static form is to create an augmented, or stacked, vector of
data, where Zt is augmented by lags. Specifically, let X:[ = (Z:, {_1,..., Z{-p+1)”
F} = (6 £ fqupt D' €] = (Vs Viopoeees Vipa 1) and let AT be the

ng X (p +q)dim(f) matrix, partitioned into nxdim(f,) blocks defined by,

AO Al ssaee Ap 0 eee
0 LD, eesse A A ese (
AT - |e o] p-1 P .
e [}
] .
4] sae 0 AO YXXEXXXIXIXIXY] Ap



where Aj = (aij, O’é] aflj)” where o;(L) = EE;:Oaiij, where ay; is 1xdim(fy).

Thus, (2.5)-(2.6) can be rewritten in static form (2.1):
2.7) X = aTe] +ef

where N=dim(X1t-) =np and r=dim(FI)=(p+q) Xdim(ft). As in the first representation, the
factors FJ{ are dynamically singular. Operationally, these two representation suggest different
estimation strategies, the first by extracting dynamic factors using contemporaneous values of
X; only, the second by using lags of X as well. A potential advantage of the second
representation is that additional indicators (lagged values of X,) are introduced for the
estimation of f;, which could improve finite sample performance.

These representations exploit the fact that (L) has finite order. If it has infinite order
then these static representations have infinitely many factors. Parametric time domain dynamic
factor models explored to date in the literature assume finite order ozi(L) (cf. Sargent (1989),
Stock and Watson (1991), and Quah and Sargent (1993)). Whether this is a problem is an
empirical issue.

It is convenient at this point to introduce some additional notation. Let X;; denote the
observation on variable i at time t and let the T X1 vector X, = (Xil’ Xi2""’XiT)" Also let F;,
be the observation on the ith factor at time t, let the T Xr matrix F=(F 1’ FZ,...,FT)', let Pp =
F(F’F)'IF’, and let A, = ()\It, )\21,...,)\Nt)’, where Ay, 1s the r x 1 vector of factor loadings on
variable i at time t. Let FY denote the true value of F. Let ¢ y denote the i'th row of §;.
Throughout, ¢ and d denote generic finite positive constants. For any matrix M, its (L))
element is M;; and its norm is IM| = {tr(M'M)}V2 . For a real symmetic matrix M, mineval(M)

Y
and maxeval(M) denote its minimum and maximum eigenvalue.



Finally, to address the problem of missing data in an unbalanced panel, let /;; be a

th

nonrandom indicator function, where Iitzl if the i variable is observed at date t, and Iit=0

otherwise.

2.2. Estimation

There are three challenges in the estimation of the factors. First, the number of parameters
is large; with N=500 and k= 15, for example, the initial factor loading matrix AO has 7500
elements. Second, if both Ft and At are treated as stochastic, then the model is a bilinear form
in random variables. Third, in our application we must handle an unbalanced panel, since
different macroeconomic time series are available over different periods of time.

The standard method of estimation of dynamic factor models is by maximum likelihood
using the Kalman filter. Application of the Kalman filter to dynamic factor models can be
justified by assuming that the factor loading matrices are constant and by making suitable
parametric assumptions on the disturbances (mutual independence, Gaussianity, and a parametric
serial correlation structure); then the Gaussian likelihood can be evaluated using the Kalman
filter and the likelihood can be maximized accordingly. This has been implemented in low
dimensional systems (e.g. Engle and Watson (1981), Sargent (1989), Stock and Watson (1991))
and in higher dimensional systems (N=60) where the maximization is done using a modification
of this appproach based on the EM algorithm (Quah and Sargent (1993)). Although the Kalman
filter is easily modified for missing data, nonlinear filters are needed to compute the likelihood
when F, and A are both random. Moreover, likelihood maximization when N is very large
does not seem promising from a computational perspective.

We therefore take a different approach and estimate the dynamic factor mode! in its static
(or stacked) form. The approach here is quasi-MLE, in the sense that the estimator is

motivated by making strong parametric assumptions, but the consistency of the estimated factors



is shown under weaker nonparametric assumptions given in section 3. To motivate the
estimation strategy, we suppose that h=0 so A, =A, and ¢;; is Lid. N(O,o%) and independent
across series. We also diverge from the treatment of F, in dynamic factor models, in which F,

is modeled as obeying a stochastic process, and instead treat {Ft} as a T Xr dimensional unknown
nonrandom parameter to be estimated. With this notation and under these restrictive
assumptions, the maximum likelihood estimator for (Aq, F) solves the nonlinear least squares

problem with the objective function,
- T ,
(2.8) VnT(F.Ag) = (NT) 121}1:1 ) t=1Iit(Xit")\i0Ft)2'
Let (F, f&o) denote the minimizers of VNT(F,AO). These satisfy the first order conditions,

- _ T = Tef '1 T =
(2.92) No = (I { =1 hFFD (2 = 1fiF¥p)-

= _+N s 5 yv1l,vN N
(2.9b) E = (X7 =tfihioh (X1 =1fichioXi
The estimator £ for which we provide results is the numerator matrix of IEt:

(2.10) F, = 2:1?=llit7_‘i()xit/21;I=llit

Efficient computation of (F, A) depends on whether the panel is balanced. If the panel is
balanced, then the parameters can be estimated by solving either of two eigenvalue problems.
The first eigenvalue problem obtains by subsituting (2.9a) into (2.8) with /;; =1 to yield the
concentrated objective function, Vyyp(AF) = (ND T _ X XeNT) TN X PeX;.
Because of the normalization F'F/T =1, minimizing VNT(A,F} is equivalent to maximizing

tr{F’(N_1 ¥ Dl]: 1X%X)F}, which is solved by choosing F as the eigenvectors corresponding to
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the k largest eigenvalues of the TxT matrix N Y I:I —1X;X;. This is the computational
strategy used by Connor and Korajezyk (1986, 1993).

The second eigenvalue problem obtains by substituting (2.9b) into (2.8) to yield the
concentrated objective function VNT(A,IE), which is minimized by the k eigenvectors
corresponding to the k largest eigenvalues of the N xN matrix T ¥ Ff: 1 XX These
eigenvectors are the first k principal components of X.

A different approach must be used in an unbalanced panel. In principal it is possible to
iterate on the first order conditions (2.9), subject to the normalization condition F’F/T=Ik.
This is, however, computationally burdensome for large N. In the unbalanced panel we
therefore minimize Vyyy using the EM algorithm. Continue to assume that A;=Aq. Let X*,
denote the latent value of Xit’ 80 X‘{‘t = )‘i(')Ft + ¢ and Xit = XTt if Iitzl and Xit is
unobserved otherwise, and let Vﬁr(F,AO) denote the "complete-data” likelihood,

Vig(F.Ag) = N EN_ T (X1NgFp”. The EM algorithm proceeds by
iteratively maximizing the expected complete-data likelihood, QNT(F(i),A(()i)) =
E[Vﬁr(F(i),Aéi)) | X,F(i_l),A(()i'l)], where F(i) and A(()i) respectively denote the ith

iterates of F and AO. Under the assumption that &t is i.i.d. N(O,o2 ), this has the simple form,
QNT(F(i),A(()i)) = —(NT)'1 y 1:] -1 ETt‘z I(Xzi_l)-?\%'}?@)z (plus terms that do not

depend on Ag or F), where 17D = By | X FUDAGD) = X i fy=1 and =
)\%1)’1{:’1) if I;;=0. The arguments about concentrating the likelihood above apply, so

FD are computed as the eigenvalues of Nl ZI;I: IX?H)’X:G'D, where X_?i_l) is

defined analogously to X; above except using Xiti_l) rather than X;; as needed for

estimates of the missing observations. The unbalanced panel quasi-MLEs are obtained by
iterating this process to convergence. Note also that this approach extends to other data
irregularities, in particular situations with mixed sampling frequencies, for example some
variables might be observed monthly while others are observed either as end-of-quarter values

(stocks) or as quarterly averages {flows).
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3. Asymptotics

3.1. Asymptotic framework

We wish to apply the model and estimation methods of the previous section to empirical
settings with the following features: the number of series is very large, perhaps in the
thousands; the number of time periods is large, but less than the number of series, in the range
of T = 100-400 for monthly data; the number of factors is far less than the number of time
series, for example r=10 or 15; and the researcher does not know the number of factors, so k#r
in general. In addition, two types of parameter instability (instability in the factor loading
matrices) are of particular concern: drifts in the parameters resulting from the ongoing
evolution of economic relations, and gross breaks in the parameters resulting from series
redefinitions or data entry errors. Empirical evidence in the literature suggests that the former
type of instability is widely present in U.S. macroeconomic time series, but that magnitude of
parameter drift is fairly small. One would hope that careful attention to data would keep the
second type of instability to a minimum, but realistically when hundreds or thousands of time
series are used some such gross errors might go undetected.

The asymptotic nesting adopted here is designed to capture these features. Specifically,
both N and T are taken to tend to infinity, but T/N - 0. Also, the number of true and
estimated factors are assumed to tend to infinity, but at the same slow rate (both as InT);
because they are sequences, they will be denoted rp and k. These assumptions are

sumimarized in

Condition R (rates)

T-co, In(N)/In(T)=p >2, 1 <kp<kinT, 1 <rp<rinT, and kp/rp—>p>0.

-12-



The possibility of two types of parameter instability is addressed by modeling h as a

sequence of random matrices hT that satisfy,

Condition TV (time varying factor loadings)
hy = diag(hy,....hNT)» where h;p is i.i.d., by is independent of (e, €, 7. §‘t}, and Tkyp

= O(1), where kT = (EnB)!P.

Two concerns about time varying parameters were outlined in the introduction: moderate
parameter drift because of structural change for many series, and large occasional jumps
because of redefinitions or coding errors for a few series. Condition TV handles these
problems. Consider the following example. Suppose a fraction T of the seies are subject to a
redefinition error at date t*, so that for these series AAt=a if t=t* and =0 otherwise. The
remaining 1-7 series experience moderate parameter drift of the form h; =b/T (so the full-
sample parameter drift is O(T_Vz), the same order as conventional sampling uncertainty were F;
observed)>. Then Tkyp = (2979 L7 +59(1-m)1/, 50 Ty, =0(1) if 7=0(1/T"). If p=3 i
condition R, this corresponds to a constant fraction of the series having redefinition
contamination and the rest having moderate parameter drift.

The next condition restricts AO.

Condition FL (factor loadings)

p\iO,ml <A< o, i=1,...,N, m=1,...,rT; rTmineval(AéAO/N)2d>O; tr(A{’)AOIN) <c< oo and

there is a sequence of positive semidefinite r- Xt matrices D such that Il Ag'Ag/N-D | —0.

The condition that tr(A(’)AO/N) < ¢ ensures that the expected contribution of the factors to the

variance of X is finite. On the other hand, the eigenvalue assumption ensures that the
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contribution of each factor to the variance of the multiple time series X, be sufficiently large.
For example, suppose that AO is such that the factor th loads onto (say) NjT variables, that the
corresponding coefficient is unity, and that each variable has a single factor. Then AgAg/N

is diagonal with eigenvalues NjT/N and tr(AjAg/N)=1. Evidently the eigenvalue condition is
satisfied if NjT/(N/rT) converges to a noNzero constant, =l On the other hand, if

NjT/(N/rT)—>O for some j, this condition fails. In this example, the number of variables upon

which the factors load must be the same order of magnitude.

3.2 Moment conditions
The final condition concerns the moments of the various stochastic terms in (2.1) and (2.4).

Let I';;

i, Em(u) denote the (¢,m) element of Fij(u)’ etc.

Condition M (moments and dependence)
The random variables {et, oo Ft} satisfy:
(@) (i) Eeg =0, E(et’et+u/N) = vy(u), and ¥, c: _ e T <2,

(ii) Eeitej = Tij» where limN_)mN'1 ZP;IZ 1 E I;I: ! Tijl <o,

(iii) supi,tEe?t< oo and limN_,oc,supS’tN'1 > I;IZl El?zl }cov(eiseit,ejsejt)\ < .
® () Egjp m = 0 Bl = T, and X 0 =-005UP; j 1 m ! Tij imW| <

(i) limpgy o5 N BN 1 25 21 55 oo | T, mmW <

(iii) SuPi,s,mEéfits,m< cc and

th—mosupL’ ,mN-1 ) 1\iI= 1 X IJ\I = 15"Ptug,up,u3 ‘ Cov(i‘it,f é-it+u1 ,m’fjt+u2,€§jt+u3,m) | <oo.

© @ Eﬁitejt+u = \Ifij(u) and supiE ?10 :_Oosupm! \If-l-l’m(u)l < oo,

(if) supmN_l L 1? =1 X IJ\I =15Pt u,v ‘ Cov(eitgitnbu,m’ejtg—jt+v,m) | <oo.
@ @ [F ) <F<o,i=lrp 1=1,.0T,

(1) EF?F?’ = EF,T’ where 0<d < mineval(le,T) <c< oo,

- 14 -



0 0.0 0 0
(iii) supp o Ly =0 |cov(Fp By o F pruFme+w) | < -

These assumptions limit the dependence across series and over time of these disturbances. It
should be emphasized that the various disturbances are not assumed to be mutually independent.
No restriction is made on the dependence between F, and the errors (e, $p- Also, e and
can be dependent, even across series, subject to condition (c).

Condition M is all satisfied in the leading case of an exact time invariant factor model, in
which e;, and F;; are i.i.d. and mutually independent and ¢, =0. However, they allow for more
temporal and cross-series dependence than in the time invariant factor model and in this sense
accomodate an approximate factor structure.

Condition M is also satisfied when (2.1) is the static representation of a parametric dynamic
factor model with constant factor loadings as discussed in section 2.1. Condition M(a) holds by
(2.6), the independence of v, CTOss series, and the assumed stationarity of Vi- Conditions
M(b) and M(c) are not relevant because the coefficients are time invariant. Condition M(d)(i1)
is satisfied by the factor model as written. Conditions M(d)(i) and M(d)(iii) represent additional
conditions.3 Finally, I which is (q+ l)dim(ft) in the dynamic factor model, satisfies condition
R if dim(f) = O(nT).

Because F(t) is assumed bounded by condition M(d)(i), this assumption is also made for its
estimator: Ft is assumed to satisfy lpitl <F< oo, izl,...,rT, t=1,..., T. Because F is identified
only up to a nonsingular k Xk transformation, without loss of generality the additional

normalization F'F/TzIkT is imposed.

3.3. Results
The results are all developed for the case of a balanced panel. This is done primarily to

streamline the notation and calculations; extension of the results to the unbalanced panel is left
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to future research.
Our first theoretical result is that the estimator Pt given in (2.10) is uniformly (in t)

consistent for a linear combination of the true factors FT, at the rate BNT'

Theorem 1. Let Xt and A obey (2.1) and (2.3). Suppose that conditions R, FL,and M

hold, and let h=hT, where hp satisfies condition TV.

(a) Then, dyySup; I f’t—HNTFt | B0, where ONT = TP for any b<min[2p-1,1], and Hyy is
not a function of (i,t}.

(b) If in addition the normalization F’?/TzIkT is adopted, |Hyp-HI B0, where H =

REF,TD’ where R is a nonrandom k Xrp matrix with row rank of min(kT,rT).

All proofs are given in Appendix A.

Several remarks are in order. First, the consistency of the estimated factors is obtained by
averaging over a very large number of cross sectional observations, relative to the number of
time series observations. Technically this is reflected in the condition that p>2 (so T=0(NI/2)),
and in the exponent b being an increasing function of p. In contrast to conventional factor
model estimation approaches which require a large number of time series observations and a
small number of variables, a larger N relative to T improves the asymptotic performance in the
sense that consistency is achieved at a faster rate.

Second, for the interpretation of the matrices H and R it is useful to consider separately the
three cases of k<17, k=TT, and kT> IT. When kT< IT, the rows of R span the space of the
first k eigenvectors of the positive definite rp X1 matrix A = r” ZF,TDL‘V %’T When kp =17,
R is a full rank square matrix with R’R=IkT so asymptotically ﬁt equals F(t) up to the full
rank transformation matrix H. When kT> I, the row rank of R and thus H 1s only I, SO ﬁt
contains k- redundant estimates of the factors that are just linear combinations of the rp

elements of ﬁt'4
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The second theorem addresses the use of the estimated factors to forecast y, | ;. Intitively,
the uniform consistency of f*t suggests that these estimated factors can in effect be treated as
the true factors for the purposes of forecasting y, , . Two complications arise however. The
first is that, if the parameters ‘Bt in (2.2) evolve over time and var(A,Bt)=O(1), then Bt is not
consistently estimable even were FO known. Here, we provide formal results only for the case
of no time variation in the forecasting equation, i.e. 8,=0.

The second complication arises when the true number of factors is unknown, as is the case
in practice. We therefore consider the problem of the estimation of the number of factors, q,
that enter the forecasting equation using an information criterion. The information criterion is

of the form,
@3.1) IC, = In@Z(@) + g(Mq

where S’Z‘(q) = SSR(g)/T, where SSR(q) is the sum of squared residuals from estimation of
(2.2) by OLS using q estimated factors. The function g(T) is the penalty function, for example
g(T)=InT/T for the Bayes Information Criterion (BIC). The information criterion estimate of r,
?, solves minl < qsklcq'
The following theorem provides sufficient conditions for forecasts based on £ 10 be

uniformly consistent for forecasts based on O,

Theorem 2. Suppose that the conditions of theorem 1 hold but in addition ky=k and 1=r
are fixed and suptEe% < 0.

(a) If k> then 62(k) B o2,

(b) Let T be the estimate of r produced by an information criterion with g(T)—~0

and dpg(T)—>oe, where k=r. Then Pr(?zr)+1 and 3%(?) B 0%
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In (2.2), the efficient forecast of Yi+1 given past (y,, Xt) (and given 6t=3) is B'F(t).
Theorem 2 implies that this efficient forecast can be achieved (in a mean-square sense)
asymptotically even if the factors, and indeed the number of factors, are unknown. Theorem
2(a) states that forecast efficiency can be achieved even if "too many" factors are estimated, and
that the overestimation introduces no additional error asymptotically. In practice, however, one
might be concerned about the effect of estimating more coefficients than are needed, so it
might be desirable to use an information criterion to reduce the number of factors. Theorem
2(b) provides conditions under which doing so produces an efficient forecast and moreover
provides a consistent estimate of the number of factors.

The conditions on g(T) in theorem 2 differ from the usual conditions to justify information
criteria. With observable regressors, model selection by information criteria in the stationary
case generally is consistent if Tg(T)—>oo and g(T)—0, which are satisfied by the BIC but not the
AIC. However, neither the AIC nor the BIC satisfy opnpg(T)—>o°. A penalty function which

does satisfy this condition is,

(3.2) g(T) = winT/onT

where 5NT is given in theorem 1, that is, 5NT = min(N where ¢ is a smali

positive constant, and where @ is a positive constant. [f for example N=T> (which satisfies

condition R), then dpp = T'*, so that o(T)=clnT/T"2 €

, which is a larger penalty than the BIC
asymptotically. The constant « is indeterminant in the theorem so a suitable choice of @ in

practice is one topic to be investigated in the Monte Carlo study in the next se(;tion.5
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4. Monte Carlo Analysis

A Monte Carlo experiment was performed to study the finite sample performance of this
factor extraction procedure and its application to forecasting. This experiment has three
objectives. The first is to verify numerically the predictions of theorem 1, which in particular
entails ascertaining the extent to which the estimated factors are close to the true factors in
finite samples for various values of T, N, r and k. The second objective is to quantify the
increase in forecast error that arises from using the estimated factors rather than the true
factors, assuming that r is known. The final objective is to quantify the additional forecasting
error introduced when the true number of factors is unknown so the number of factors is
selected by an information criterion, as studied in theorem 2.

The experimental design is the parametric dynamic factor model that, in its most general
form, allows for time varying factor loadings, an autoregressive factor, and idiosyncratic terms
that are serially correlated and correlated across series. All the results here are for a balanced

panel. The design is,

(4.1) Xip = E?=O)‘ijtFt-j * &t
(4.2) Ft = aFt-l + U
N 2
4.3) (1-aljej = (LD rbvi g Fbvi g
(4.4) Njje = Mg T /DSt

where i=1,...,Nand t=1,...,T, Ft and )‘ijt are r X1, {eit’ Vips g“-ljt} are 1.1.d. N(0,1), U is i.i.d.
N(O,1,), and {u} is independent of {ejs Vi gijt}' As discussed in Section 2.3, because this is a
dynamic factor model, in the static form the true number of factors is (q+1)r. The time
variation here is a special case of the heterogeneous time variation allowed in the theoretical
work in which hyp = h/T with probability one.
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The initial factor loading matrix A, is chosen as follows. Let RZ1 =

var( Y, jl=0}‘ij0Ft-j)/ [var( Y (}=0}‘ijOFt-j) + var(cit)]. Then kijO = }‘Ti‘ijo’ where XijO is
i.i.d. N(0,1) and independent of {e;;, v;;. S‘ijt’ v}, and ¥ is chosen so that R% has a

uniform distribution on [0.1,0.8] .6 The initial values of the factor FO are drawn from the
stationary distribution of F;. Finally the {Xit} are transformed to have sample mean zero and
sample variance one (this transformation is used in the empirical work presented in the next
section).

The scalar variable to be forecast obeys,

(4.3) Yt+1 = E?=OL'Ft-j t €t

where ¢ is a rx1 vector of 1's and €, , is i.i.d. N(O,1).

The factors were estimated as discussed in section 2 for the balanced panel using {Xit}’
i=1,...N, t=1,...,T. Estimates were based on the static framework, that is, an augmented X
constructed by stacking X and its lags as discussed in section 2.5 was not used. The
coefficients f in the forecasting regression were estimated by the OLS coefficients f in the
regression of y, , | on Ft, t=2,...,T; in particular no lags of Ft were introduced into the
forecasting equation. The out-of-sample forecast §T 41 Was constructed as §T 1= B'ﬁT'
For comparison purposes, the infeasible out-of-sample forecast §% 41 = BO’F? was also
computed, where BO are the OLS coefficients in the regression of Yi+1 0N F?, t=2,...,T.

The free parameters to be varied in the Monte Carlo experiment are N, T, «, a, b, and h.
The results are summarized by two statistics. The first is a trace R2 of the multivariate

regression of £ on Fy:
(4.6) R%J; o= ElPgofl 2B 812 = Buc Ppyf/Eud D),
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where £ denotes the expectation estimated by averaging the relevant statistic over the Monte
Carlo repetitions. According to theorem 1, if k = (q+1)r then R%,Fo B 1. Values of this
statistic considerably less than one indicates a case in which theorem 1 provides a poor
approximation to the finite sample performance of £

The second statistic measures how close the forecast based on the estimated factors is to the

infeasible forecast based on the true factors:
2. _ A ~0 2,620 2
7 8% 50 = 1EOTL1YT+D) /BGT4 1)

According to theorem 2, S%,S\’O B { either if k = (q+ 1), or if k = (q+1)r and the factors
included in the forecasting regression are chosen using an information criterion that satisfies
condition IC. Accordingly, results are reported for several information criteria: the AIC, the
BIC, and the information criterion with the penalty function (3.2) for various choices of the
scaling parameter .

The results are summarized in table 1. Panel A presents results for the static factor model
with i.i.d. errors and factors. In panel B, this model is extended to idiosyncratic errors that are
serially correlated across series. Panel C considers the dynamic factor model with serially
correlated factors and lags of the factors entering X, and time varying factor loadings are
introduced in panel D.

First consider the results for RI%,F()’ which checks the consistency predicted by theorem
1. In all cases, R%,Fo exceeds .8, even for T=25 and N=50. As T and N increase, this R2
increases, for example, for T=100, N=250, r=k=3, R%,F():'W . As predicted by the theorem,
estimating k > typically introduces little spurious noise, for example, when T=100, N=250, and

r=>5, increasing k from 5 to 10 decreases R% Fo by .02. If the idiosyncratic errors are
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moderately serially correlated (a=.5), Rl%,Fo drops only slightly, although it drops further
when a=.9 (although this drop is iargely eliminated when T is increased). The R%,Fo is also
high when the true model is dynamic but the factors are extracted from a static procedure with
k=r(g+1), although some deterioration is noticeable when the factors are highly serially
correlated. The greatest deterioration of the estimates of the factors occurs when time variation
in the factor weights is introduced. With large time variation (h=10), R%,Fo is between .83
and .87 for the various cases considered. In general, the results improve when T increases,
with N, r, and k fixed, and when N increases, with T, r, and k fixed; for fixed T and N,
results deteriorate as r increases and k=r, although they deteriorate only slightly as k increases
for fixed r.

Next turn to the results for S%&O’ which check the consistency predictions of theorem
2. The results for ¢ =r essentially parallel the results for R%,Fo’ although the range of
S%io values exceeds the range of R%,Fo' When T=100 and N=250, S%j(} is
generally large, typically exceeding .95 in the static models. The quality of the forecasts drops
in the dynamic models and when there is time variation in the factor loadings.

The results for forecasts based on the model selection criterion are generally consistent with
theorem 2. Generally speaking, for T and N large, forecasts based on the BIC, AIC, or (3.2)
with a=.001 perform similarly, and only slightly worse than those with g=r. However, the
forecasts based on (3.2) with larger values of w such as w=.01 perform poorly, and when w is
further increased the forecasts deteriorate even further (these results are not shown to save
space). This suggests that criteria that satisfy condition IC are unduly conservative, a

possibility discussed in section 3 and a consequence of condition IC being only a sufficient

condition for theorem 2.
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5. Application to Forecasting U.S. Industrial Production and Inflation

This section reports the results of a simulated real-time forecasting exercise, in which
forecasts based on the diffusion index approach are compared to forecasts from a variety of
benchmark models.

This exercise focuses on forecasting two macroeconomic variables for the United States: real
economic growth, as measured by the twelve-month growth of the index of industrial
production (total) (IP), and inflation, as measured by the twelve-month growth of the consumer
price index (urban, all items) (CPI). Specifically, let Z; denote either IP or the CPI in month t.
In the notation of section 2, the variable to be forecast is y,, | = In(z;, 15/2). The complete

data set spans 1959:1 - 1997:9.

5.1 Models

For both IP and the CPI, the diffusion index (DI) forecasts were compared to benchmark
forecasts from an autoregressive mode! and multivariate regression-based forecasts using various
leading indicators. For the CPI, as an additional comparison forecasts were also computed using
models based on the Phillips curve. These various forecasting models are now described in
turn.

Diffusion Index forecasts. Diffusion index forecasts were computed as outlined in section
2. Two sets of variables were used: a balanced panel of 170 monthly macroeconomic time
series, 1960:1 - 1997:9, and an unbalanced panel in which these 170 series were augmented by
54 monthly series which are available for only part of this period, so that the total number of
series in the unbalanced panel is 224. The series were selected judgmentally to represent 14
main categories of macroeconomic time series: real output and income; employment and hours;

real retail, manufacturing and trade sales; consumption; housing starts and sales; real
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inventories and inventory-sales ratios; orders and unfilled orders; stock prices; exchange

rates; interest rates; money and credit quantity aggregates; price indexes; average hourly
earnings; and miscellaneous. The full list is given in Appendix B. This list is similar to lists
which we have used elsewhere (Stock and Watson [1996, 1998]). These series were taken from a
somewhat longer list, which was scanned visually to eliminate gross problems such as series
redefinitions. However no further pruning of this list was performed based on forecast
performance measures. The series were taken from the February 1998 release of the
DRI/McGraw Hill Basic Economics database (formerly Citibase). In general these series
represent the fully revised historical series available as of February 1998.

All series on this list were subjected to two preliminary steps: possible transformation by
taking logarithms, and possible first differencing. The decision to take logarithms or to first
difference the series was judgmentally made. In general, logarithms were taken for all
nonnegative series that were not already in rates or percentage units. In general, first
differences were taken of real and nominal quantity series and of price indexes. A code
summarizing these transformations is given for each series in Appendix B. After these
transformations, all series were further standardized to have sample mean zero and unit sample
variance.

The factors were estimated using only contemporaneous values of X (no stacking of lagged
values of X,). The factors were computed using the algorithms described in section 2. A total
of k=12 factors were estimated.

In general the error term ¢, in (2.2) can be serially correlated. This suggests considering a
variant of (2.2) in which lagged values of the dependent variable also appear as predictors. We

therefore consider diffusion index forecasts of the form,

(5.1)  In(z 1a/z) = By + Lo 18y + TF —ovjdlnzj + ¢
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where {f*it} are the estimated factors. Given q and p, the coefficients of (5.1) were estimated
by OLS. Four variants of (5.1) are reported, each with different treatment of q: (i) the
number of factors recursively selected by BIC, 1<q<12, and no autoregressive components (p=0);
(i) the number of factors recursively selected by BIC, 1=q=<12, and autoregressive components
recursively estimated by BIC (0<p<5); (iii) a fixed number of factors and p=0; and (iv) a fixed
number of factors and p selected by BIC (0<p<35).

Autoregressive forecast. The autoregressive forecast is a univariate forecast based on the

model,
(5.2)  In(z15/z) = n+ TV _pAlnz + ¢,

where p is selected recursively by BIC (0<p<35).
Multivariate leading indicator forecasts. The multivariate leading indicator forecasts are of

the form,

(5.3)  In(zy10/7) =By + E?:OETzlaijwi,t—j + Elj):O’YjAIHZt_j + ¢
where {wit} are various leading indicators that have been used elsewhere to forecast these
variables.

For the IP forecasts, the set of eleven leading indicators used here are those that we have
used in real time forecasting using experimental coincident, leading and recession indicators (see
Stock and Watson [1989, 1991])7. Five of these leading indicators are also used in the factor
estimation step in the the diffusion index forecasts. These are (the mnemonics under which

they appear in Appendix B appear in parentheses): average weekly hours of production workers
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in manufacturing (iphrm); the capacity utilization rate in manufacturing (ipxmca); housing
starts (building permits) (hsbp); the index of help-wanted advertising in newspapers (lhel);
and the interest rate on 10-year U.S. Treasury bonds (fygtl0). The remaining six leading
indicators are: the interest rate spread between 3-month U.S. Treasury bills and 3-month
commercial paper; the spread between 10-year and 1-year U.S. Treasury bonds; the number
of people working part-time in nonagricultural industries because of slack work; real
manufacturers’ unfilled orders in durable goods industries; a trade-weighted index of nominal
exchange rates between the U.S. and the U.K., West Germany, France, Italy, and Japan; and
the National Assiation of Purchasing Managers’ index of vendor performance (the percent of
companies reporting slower deliveries).

For the CPI forecasts, eight leading indicators are used. These variables were chosen
because of their good individual performance in previous inflation forecasting exercises. In
particular these variables performed well in at Jeast one of the historical episodes considered in
Staiger, Stock and Watson (1997). Five of these variables are also used in the factor estimation
step in the diffusion index forecasts: the total unemployment rate (thur); housing starts (hsbp);
new orders in durable goods industries (mdoq); the nominal M1 money supply (fml); and the
federal funds overnight interest rate (fyff). The remaining three variables are: real
manufacturing and trade sales; the interest rate spread between 1-year U.S. Treasury bonds
and the federal funds rate; and the trade-weighted exchange rate listed in the previous
paragraph.

In all cases, the leading indicators were transformed to be approximately stationary. This
entailed taking logarithms of variables not already in rates, and differencing all variables except
the interest rate spreads, housing starts, the index of vendor performance, and the help wanted
index.

For each variable to be forecast, two leading indicator forecasts were produced. To be
cmam;wmﬂummmmoﬂR’MemﬂmmmﬁmmMHMWMQmwhmMMBGomzn
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in (5.3)), with p and q selected by recursive BIC, with 0=<p<5 and 0=q=<3. The second forecast
uses recursive model selection, so that the forecast at a given date is based on a subset of the
eleven leading indicators. In this case, at each date m, p and q are selected by recursive BIC,
where 1<m<11, p=3, and q={1,3}. This entails comparing 4094 different models at any given
date. This latter approach is closest to classical model selection theory, in which all models are
enumerated and compared using an information criterion.

Phillips curve forecasts. The expectations-augmented Phillips curve constitutes an important
tool of empirical macroeconomics and is considered by many to be a reliable tool for forecasting
inflation, cf Gordon (1982) and, more recently, the Congressional Budget Office (1996), Fuhrer
(1995), Gordon (1997), Staiger, Stock and Watson (1997), and Tootel (1994). For this reason,
forecasts based on two variants of a Phillips curve are also included for comparison purposes.

These specified the twelve-month inflation rate as the dependent variable:

where p, = In(CPL), 7, = 1200*Ap, is monthly CPI inflation at an annual rate, u, is the
unemployment rate, and Z, is a vector of variables that control for supply shocks and/or
measurement difficulties. The two variants differ in the supply shock variables Z,. In one, z,
consists solely of the relative price of food and energy; in the other, this relative price is
augmented by Gordon's (1982) variable that controls for the imposition and removal of the
Nixon wage and price controls.8

The parameters of (5.4) were estimated recursively by ordinary least squares. For each of
the two variants, the lag lengths q and p were chosen by recursive BIC, where 0<q<35 and

O0=p<5.
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5.2. Estimation

The estimation and forecasting was carried out in a way to simulate real-time forecasting.
This entailed fully recursive parameter estimation, factor extraction, model selection, etc. For
example, to construct the first forecast, the parameters and factors were estimated, and the
models were selected, using data available from 1959:1 through 1970:1 (the first date for the
regressions was 1960:1, with earlier observations used for initial conditions as needed). These
parameters and models were then used to forecast IP growth and CPI inflation from 1970:1 to
1971:1. All parameters, factors, etc. were then reestimated, and information criteria were
recomputed, using data from 1959:1 through 1970:2, and forecasts using these models and
parameters were computed for twelve-month growth from 1970:2 to 1971:2. Because all order
and model selection is fully recursive, this means that the actual model used to produce the
forecasts for a method that uses an information criterion in general changes from one month to

the next; what is constant is the rule by which that model is selected.

5.3 Results

Forecasting results. The results of the simulated out of sample forecasting experiments are
reported in table 2 for IP and in table 3 for CPI inflation. The entries are the mean squared
error (MSE) of the candidate forecasting model, computed relative to the MSE of the
autoregressive forecast (so the autoregressive forecast, which is unreported, has a relative MSE
of 1.00). Smaller relative MSEs signify more accurate forecasts.

First consider the results for IP. In the table, "DI" denotes the static diffusion index
forecasts (p=0 in (5.1)), and "DIAR" denotes the diffusion index forecasts augmented with
lagged monthly IP growth (p selected by recursive BIC in (5.1)). The diffusion index forecasts
with BIC factor selection represent substantial improvements over the leading indicator

multivariate forecasts. The performance of the diffusion index forecasts is similar whether or
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not lags of industrial production growth are included as predictors. This is rather surprising,
because it implies that essentially all the predictable dynamics of industrial production growth
are accounted for by the estimated factors. The results for the diffusion index models indicate
that, among forecasts with fixed numbers of factors, almost all the improvement is obtained
after merely two factors are added; indeed, the MSE actually increases upon the addition of
the fourth factor (this is possible because the MSE is for pseudo out of sample forecasts). It is
also noteworthy that the BIC-selected forecasts outperform any of the fixed-k forecasts. This
suggests that the number of factors useful for forecasting IP evolves over time, and that this
time variation is picked up by the recursive BIC procedure. The results for the unbalanced and
balanced panels are generally similar. The BIC-selected DI RMSEs are the same for the two
panels. However, the fixed-k forecasts are generally better for the larger unbalanced panel.

The diffusion index forecasts of the CPI (table 3) also represent substantial improvements
over the benchmark models. Unlike the IP forecasts, the estimated factors do not account for
all of the predictable dynamics in CPI inflation, and adding lags of CPI inflation to the
diffusion index forecasts improves their performance, both for fixed k and k selected by
recursive BIC. The results for fixed numbers of factors and the autoregressive correction
indicate that the MSE attains a minimum at five or six factors. In contrast to the case of IP,
the best fixed-k forecast is considerably better than the BIC-selected forecast, in both the
balanced and unbalanced panel (the relative RMSEs are .62 v. .71 for the balanced panel with
the autoregressive terms, respectively).

It is interesting to note that, in constrast to the results for IP, the leading indicator forecast
based on a recursively BIC-selected subset of the leading indicators is considerably worse than
using all leading indicators and in fact is worse than just using an autoregressive forecast. This
1s consistent with the view that the correlations between the individual leading indicators and

inflation are unstable over time, so that variables selected on the basis of good prior
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performance become unreliable and thus produce poor out of sample forecasts. It is also
noteworthy that the Phillips curve model without the wage and price control variable performs
almost as well as the leading indicator forecast, although not nearly as well as the
autoregressive-augmented diffusion index forecasts. When the wage-price variable is added,
simulated real time performance of the Phillips curve forecast actually deteriorates and barely
improves upon the autoregressive forecast.

It should be stressed that the multivariate leading indicator models are sophisticated
forecasting models that provide a stiff benchmark against which to judge the diffusion index
forecasts. In fact, the performance of the leading indicator models in table 2 arguably
overstates their out of sample potential performance, because the lists of leading indicators used
to construct the forecasts were chosen by model selection methods using data similar to these,
cf. Stock and Watson (1989) and Staiger, Stock and Watson (1997). In this light, we consider
the performance of the diffusion index models to be encouraging.

Estimated factors. The previous results suggest that it is of interest to examine the first few
estimated factors. The interpretation of the factors is simplest for the case of the balanced

N

panel, for here the factors are the eigenvectors of Nl Ly =XX] ordered by the magnitude

=242
of the associated eigenvalues. We therefore focus here on the full-sample estimates of the
factors using the balanced panel. Only this ordering of the factors is considered. Because the
estimates here are for the full sample, these factors in general differ from those used in the
recursive out-of-sample forecasting exercise.

Figure 1 displays the R of the regressions of the 170 individual time series in the balanced
panel against each of the six factors, plotted as bar charts with one chart for each factor. (The
series are grouped by category and ordered numerically using the ordering in the appendix.)

Broadly speaking, the first factor loads primarily on output and employment; the second factor

on infiation and interest rate spreads; the third, on unemployment; the fourth, on housing
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starts and orders; the fifth, on stock returns and money growth; and the sixth, on new orders.
In this sense, the first factor may be thought of as an output factor, the second as an inflation
factor, the third as an unemployment factor, etc. Taken together, these six factors account for
47% of the variance of the 170 monthly time series in the balanced panel, as measured by the
trace-Rz; the first twelve factors together account for 61% of the variance of these series.”
The factors are plotted in figure 2, each along with an individual transformed series
suggested by the variance decompositions in figure 1. For example, the first factor is plotted
with the monthly growth rate of industrial production, both transformed to have unit standard
deviation. Interestingly, the factors generally contain considerable high frequency power, for
example, factor #3 has low frequency behavior similar to the unemployment rate, but has much

more pronounced monthly fluctuations.

6. Discussion and Conclusions

We find several features of the empirical results surprising and intriguing. Few theoretical
macroeconomic models that suggest a linear factor structure for the overall macroeconomy, yet
we find that six factors account for almost one-half of the variance of the 170 time series in
our balanced panel and twelve factors account for almost two-thirds of this variance. Even ifa
factor structure describes the joint behavior of these series, there is no reason why a forecast
based on static factor estimates should outperform forecasts based on leading indicators or other
specialized models that have been fine tuned through years of experience. Yet, forecasts based
on just the first six factors perform well for both CPI inflation and industrial production
growth, series that measure quite different economic concepts (nominal prices, real output} and
have quite different univariate time series properties. Thus, these results raise numerous 1ssues
for future empirical and theoretical research.
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One such issue, only touched on in section 5, is the interpretation of the estimated factors.
A feature of traditional diffusion indexes is that they were constructed to have a ready
interpretation, such as a measure of how widespread employment growth is across sectors in the
economy. Like traditional diffusion indexes, our estimated dynamic factors are averages of
many different economic series, but they are identified only up to a nonsingular k Xk
transformation. Thus the estimated factors will not in general have the natural interpretation
that is a feature of traditional diffusion indexes. This raises the question of how to transform
the factors into interpretable diffusion indexes. For work on this topic, see Quah and Sargent
(1993) and Forni and Reichlin (1996, 1997, 1998).

Several methodological issues remain. One is to explore estimation methods that might be
more efficient in the presence of heteroskedastic and serially correlated uniquenesses. Another
is to develop a distribution theory for the estimated factors that goes beyond the consistency
results shown here and provides measures of the sampling uncertainty of the estimated factors.
A third theoretical extension is to move beyond the 1(0) framework of this paper and to
introduce persistence into the series, for example by letting some of the factors have a unit
autoregressive root which would permit some of the observed series might contain a common
stochastic trend.

Another important extension is to real time forecasting with mixed frequency data (weekly,
monthly and quarterly). The EM algorithm presented for the unbalanced panel can be extended
to panels with mixed periodicities, albeit with some computational complications. Other issues
that arise in real time include data revisions and the nonsynchronous timing of data releases.

Work on these and related issues is ongoing.
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Footnotes

1. Itis our understanding (L. Reichlin, personal communication) that a working paper in
progress provides proofs of the consistency of the estimated dynamic factors obtained using an
alternative method based on dynamic principal components.

2. A body of work applying break tests suggests that the 1/T nesting is empirically plausible
for many macroeconomic time series, cf. Stock and Watson (1996, 1998). The 1/T nesting is
also the local alternative against which break tests such as the Quandt likelihood ratio test would

have nondegenerate asymptotic power were F; observed.

3. The bounded support condition M(d)(i) is not satisfied if ft follows a Gaussian vector
autoregression. However this assumption is made to simplify the proof of the theorem 1 and
arguably is of a technical rather than substantive nature, because F can be taken to be quit
large and d can be taken to be very close to zero.

4. When kp>r, £ asymptotically has reduced column rank 1 even though T”F has
orthonormal columns by construction. The source of the difference between F and F is that

(in a balanced panel) F are the first kT eigenvectors of Nl ¥ I;I: 1 XX, Asymptotically,

the smallest (k1) eigenvalues of this matrix are zero, so the columns of T'1 ZE: IXSI:“é
corresponding to these Fs are themselves nearly zero, and in turn the correpsonding columns of
ﬁ, and thus of Pt = ﬁ’Xt/N, are nearly zero.

5. It should be pointed out that theorem 2 simply states sufficient conditions, so the BIC, while
not satisfying the conditions of the theorem, nevertheless might provide efficient forecasts.

6. That is, Mt = [RIRI-1) var(T 4_oRiioF, )17 ehis uses var(e;)=1), where
R? is i.i.d. U(0.1,0.8).

7. The list used here consists of the leading indicators used to produce the XRI and the XRI-

2, which are released monthly at the web site http://www.nber.org. Additional documentation

is available at that site.

8. Most modern specifications of the Phillips curve treat prices as 1(2) (cf. Gordon [1982,

1997]), but in (5.4), prices are treated as I(1). An I(2) specification is achieved in (5.4) by

imposing ). P=O'Yj =1. Forecasts were also computed for this specification. The simulated real
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time forecasts for the I(2) specification were slightly worse than those for the I(1) specification,
so only results for the better performing I(1) specification are reported below.

9. The contributions to the trace-R2 by the first six factors are, respectively: 0.156, 0.115,
0.077, 0.046, 0.042, and 0.035, for a total of 0.471.
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Appendix A: Proofs of Theorems
The proof of theorem 1 makes use of the following lemma.

Lemma AI. Under conditions R, P and M,

(@ Sypkrsup (| Fo'AgeyN| B0;

(b) yypkrsupg (|Fo'(Ac-Agye/N| 2 0;

©) SNTkTsupS,tles'et/N - Y(s-0) | Bo,

(@) Sypkpsupg (| FY(AUAYN - AAGNF}| B 0;

(©) Syrkrsup (| XX/ - PO (AgAg/NE - (0| B O;

(® sup; p{Bsuppal ) < T rp(TiypFHsun; 1 Th— oo ITig @137
where AF)=T L2 T_ FFY ;N

(@) supp|(NDTEN_ ePre| B 0;

) supp(NTY TSN etppFONg | Bo;

G) supg| NTEN_ @EMEEM A Bo;

G suppNTEN _ N EmEET) 4y Bo;

® suppINTEN_ A @EFT Ay Bo,

Proof of Lemma Al

The proof uses the following results. Let g, and #;, ¢ be random matrices indexed by t=1,...,T,

s=1,...,T:
(A.1a) If Tsup E( (™ |4 - 0 for =1, then sup, [ 1, | Bo;
(A.1b) 1t T%supy E(l7g |19 >0 for q=1, then supg ([l (150; and
2
{A.1c) If both supg | "Evs,t" — 0 and T"sup |E( I Vs,t'EVs,t“ 2)—>O, then sups,tll us’tuBo.
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Also note that condition R implies the following limits, which in turn imply limits used in the proof:

K2/ - 0, SprkOra/T 0, and SR TAGLYN — 0.
(2) Let v =8nrkpFo’Ade/N and use (A.1b) with g=2. Then
2

2 o262 1 207004 2
T Sups,tEVs,t =T BNrkTE[FS AOet/N]

< B IGEFVFOECAgAYe/ND).
Now EFYED) < 1 F2 and BejghgeyN?) < e mMONT T _ 25 _qlmyl. s0
Toupg B0} ¢ < GpT2RdefNERAN 2T 1m -0
by condition M(a)(ii) and lemma Al.
(b) Let Vo = 5NTkTrl{~2F(AS—A0)’e[/N and note that, with probability one,
|SNTRFY (A-Ag) e/N| < Sk Fol lagag e/NI < g .

Thus the result follows if sup t|| Vg t" B 0, which is shown using (A.1c). Now Eef(A;-Ag)/N =

@ND LY T8 By = kN TSR Z DR o 00, s0

e N
Sup; ¢ I Erg ¢ I = sups’téNTkTr/ﬁF JNTYEY _ L3 ¥yen |

= _1
< Grprprp DT Psup I 5 - oorp” 15|
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which tends to zero by conditions R and M(c)(i). In addition,

2 2 .2 2 .2 =2rT 1N
T*sup (E |l 7g ¢Erg (17 = Tsupg dqpkqrpF” L= varlNT L5 _ jej(Ng m-No,m)]

2 22200220 2 4V !
< @RI NE (Tryp)” {(supy (Be) *(supy my ¢ Bty o)

-1«N N -1
+ N L5 =IEj —18UP; ¢ ¢'TT |tr[c0v(eit§‘is,ejt§’js,)]|}
which tends to zero by conditions R, M(a)(iii), M(b)(i11), and M(c)(ii).
{c) Let Vg t=5NTkT(eéet/N - ¥(t-s)) and use (A.1b) with g=2. Now
2 2 2 2.2 -1-N
T“supg (B I Vs’tll = (a\kT /N)sups’t|N X Z?zlcov(eiseit,ejsejt)l
which tends to zero by conditions R and M(a)(iii).

(@ supg Non ke FOTAA-AGAGNIED |
< supg SnrkrIFC 12N AA-AGANI

< Flsupg (I | + 2F%sup, 1, |

where Pt = 6NTkTrT(AS—AO)’(At—AO)/N and p, = SNTkTrT(At-AO)’AO/N.

First, show that supy t“ ve (b B 0 using (A.10):

1N 2 ¢ ,
supg [Ev (| = supg SNTkprpINT LY o151 Er ooy B |

= (BNTkTr%JTNTKzT)zsupi L5 = o Il ey
which tends to zero by conditions R and M(b)(i). Also, by conditions R and M(b)(iii),
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Tzsupt’SE I 7 s B s I2

2222 1o N ws wt 02 o a2 g 2
= supy SNTREFT EINT I =1 Zr 1 By = 1057 BOT 8! I
B 2 222
= sup; ONTRTITT
¢=1lm=1 D =12 5212 =151, eSir m EOTTSir, e i 1)
2 242 4
< (kT /N)(Trg ) {S“Pi,s,mES”?s,m

2

-1<N N
+supy ;N DB =1):j zlsupt,ul,uz,ugf,|Cov(é‘it,£’§‘it+u1,m’§jt+u2,f%t+u3,m)| <
- 0,

s0 that sup, ¢ I | B 0. Next, show that supy | | B 0 using (A.1a) with q=2:

Tsup Ell |2 = Tsup G pkiegE l (A A AN | 2

< @R T s N EN Y 2 o 1T mm @)
which tends to zero by conditions R and M(b)(ii), so sup, |l s | Bo.
( : ' Orfa 0 _ v4
e) Write BNTkT[XSXt/N - FS (AvolN)Ft - 'Y(S't)] = E 1:1V1 s’ where

_ 0 vr e ns 0
71 st = ONTRTE s [(AGAAGAQYNF,

V2,St = 6NTkT[eéct/N - Y(S‘t)]
P35t = 25N rRrFy (hg-Ag)'eN

_ 0
V4,St = 26NTkTFS Aoet/N.

It was shown in parts (a)-(d) that sup, t|| 2. | B0,i=1,...,4, and the desired result follows.

- 38 -



() Esuppa}y(P) = Esupp[T! ET=1FetF(t)'9*it'7\io)]2
=4 IT IT +2vT T
< EF' L L Sl T8 1 11 2 o1 1Mo e s Mo
—4r 2 T T
< P2 Snl (G DE | =1 L g = 13upjsupy I s =-o00 I T mm®|

< (FT)(Thyp) Fhsupsup T 5 oo I T mm(®)]

1 1 — 1
S0 supi{EsupFA%g(F)} % < (r%JT) / 2(TKZT)FZ{supisupmZ T; -0 I T mm@} "2 . 0 by condition
M(b)(1).

(g) Let (F’F/T)fm denote the (£,m) element of (F’F/T)'l, and note that condition M(d) implies

that sup, _ (F'E/M M<d. Now

N ER L eiPpe;

_dgkr ekt ppmimr2yT pT :
= oNTL =1 e (FFD T 5 o1 I =1 FpFmsONTCte/N - 7(50)

kTt kT ) fm2 T T
so, by result (¢), condition R, and condition M(a)(i),

supp(NT) L LT efPre;
< (k2o )d TFsup, |8y rleie /N I+ a2md P2y ® B
< (kp/énT) sup; ¢ NT[etcs -y(s-011 + (kp/ YA F°Y U =-00 |v(w)| 0.

() Let B=(F'F/T) L@ F/T), and note that condition M(d) implies that | By | < kpF2d L. Now
deN 5 0 K 1N ,
supp| ND TN _ePEF Mgl = suppl £7% 1 Yl BymNT I = 1Mo, m(&F/ D¢l

3 1h=2 -1t -1+ N / 23!
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Now
1eN o
Snrkpsupg gN Ly =1 (&F/ Ty

_2 ,
< F*{sup; | dnrileies/N - (9| + Gykp/DE YW} B0
by result (c), condition R, and condition M(a)(i), and the result follows because rT(k—?\/SNT)V 2>0.

(@ Now supg|NTEN_ @FEMEFT 4]

- 1 - 1 _
< d" ep/oyp)  flopdypsupg pN LeN R supp XL N 2 a7

Ya
iml

By result (f),

2 Y 2 3t
ESUPFE I[N E i _lA ] 2 < kTsupl’[,{EsupFAl,g}/z

— 1
< Geprp/ T Ty F2sup; T § — oo T @ ) =0

so supp LKL INTEN_ a2 172 B 0. Also, sy pkpsupy pN° El_l(e’F/T)gBOby the

)

result in the proof of (h). It follows from condition R that supF|N E i = l(gle/T)(F’F/T)_ Ai|
0.

- 1
(j) Now supp|N" ly 1_17\ O(FO’F/T)(F Ty L, il = kaTF d hE =1(N 1Z§=1A%m)/2’

s0, by result (f),

0, 72 )
Esupg|N° ): ) ﬂ17\ olF ' F/T)(E F/T) Ia, | = kTrTF d )\{supl mES“pFAlm}

1
< (kTrTJT) Vapdy )\(TKZT){Supisume U =-00 |Fii,mm(u)|}
which converges to zero by by condition R; the desired result follows from the Markov inequality.
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(k) Now NIEN_ av@EFEm A = e Emy NN aag
< maxeval[(FF/T) N T2 N _ a0
kTt 1N 2
<cLp— N Li=18ip
- AeN L omrmrla ) < 2 .
us Esupg [N L5 =14 (F'F/T) Al = ckpsup; EsuppA7,(F), which converges to zero by result

(f) and conditions R and TV; the desired result follows from the Markov inequality.

Proof of theorem 1

(a) The proof consists of two parts. First, it is shown that (miﬁus) the objective function is
asymptotically equivalent to tr[T'lFO’PFFOD], in the sense that the difference between these two
objective functions converges to zero in probability uniformly in F. This permits an asymptotic
characterization of F. Second, this is used to show the uniform consistency of ﬁt'

First turn to the asymptotic objective function. Write VNT(F) = (NT)'1 21?: 13{& -

Qnp(E), where Qup(F) = N1y g N_ X{PEX;. Thus minimization of ¢ p(F) is identical to

maximization of QNT(F). Let Qqp(B) = (NT)'§ I\iJ= 17\i0FO

ONTE-QuTE) = I3 = (A{p(), where

’PFFO}\iO. Algebra reveals that

AP = N1l (AEFTY A

Agp(P) = NN A Emy T EE TN
Ayp(®) = 2N TR (EFMEETY A

Ay = 2N g (eFmEED L EFTN

Agp(P) = N'! ):If:1(giF/T)(F'F/T)‘I(F’gi/T)
By lemma A1(g)-(k), supFlAiT(F)| Bo,i=1,...,5. Thus supF|QNT(F)—QNT(F)| Bo.
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If QNT(F) is bounded away from zero for at least some F that satisfies F'F/T = Ik'r and
sup;;| Fy;| <F, it follows that F is asymptotically the maximizer of QnT(F). This condition is now
shown to hold; more precisely, it is shown that there exists a constant ¢ and some sequence {Fit}’_ say
{F*,}, such that Pr[Qup(F*) =c]-1.

First consider the case kT <IT, and choose F* :FO(FO’FO/T)'I/2 'R’, where R= [IkT 0]. Note that for

positive semidefinite r Xr matrices A and B, tr(AB) =mineval(A)ur(B). Now

Qu(EH = el EYPLEY (AgA /)]
> mineval(AjAy/N)[RR'(FOFO/m)

> mineval(A4A,/N)mineval(FO'FO/T)tr(RR")
4o

[ A : * O O, 0 ‘1/21 _L l -
where tr(RR’) = k. Next, consider the case k> 1+ and let F* = [F(F'F-/T) F~], where F~ is a
T T-'T

T X (ky-r) matrix such that F 1 ’FO =0,

FT,|<F, and 0<dseigFL FLM<c<o. Then POt =
FOFOIT, so QP = tl(FOEUT)(AGAGMN)] = mineval(AjAy/Nymineval(FOFO/T)rp. Thus,

for general kr,
Qur(F*) = [rpmineval(AYAy/N)mineval(F) FO/Tymin(kp/ep, 1).
Now rymineval(A4Aq/N) >d by condition FL. It is shown below that kb || (B FO/T)-Er ] 2Bo
wIT oitg/N)=d by : TIT F,T :
so mineval(FY"F/T)-mineval(Zp; )80; by condition M(d), mineval(Sg ) >d. Also kep/rp>p >0 by

condition R. Thus Pr[QNT(F*) = 1/zdzmin(/ut, 1>0]—-1.

Next turn to the uniform consistency result. Let

Hyp = EFDIE (A A0/N)

Y O/ as 0
£ = XX(YN-FJ'(AGAG/NF - v(s-t)
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PSR QR W, S
so B HyFY = BT HT L Lo Fovts0 + T L= Rk Thus

onrsupg ) B HyrFY |
< gl EEM  Hsop I T 2T Ers o) + sup 1T 2§ B ).

-~ _ 1 _ ~ _
Now || (F'F/T) 1l| < ck/f, SNTSUP; | T 12€=1Fs'y(s-t) | < @GnTkT/DFL °lf — oo |YW], and
1T = 1=
onpsup I TTE T Bt |l < dppkfFoupg (£l Thus,
2 — —
ixpsup I B HNFO ] = 0/ o/ DFE G oo 1YW + chpdypFsupg i £ | B 0 by lemma Alle)

and condition R.
(b) We now provide a limiting characterization of HNT when F is normalized so I:“’IEIT=IkT. Let

- - 1
flyy = EEOMAGAYN) /2

1 1
g = G ECEIT) 2 (AgAgN) /2

H = VGY'LE p(AjAg/N)

where J (kT Xky) and GT (rTka) are defined below. Then HNT -H =

(B - BEAGAGN" + 1GYIECFOT) -2 E I (A gAy/N), so

- 1
I A2 < Ny - B D2 Deagagm™ ™ 112

1 1
+ rop 1PIEC D AR 1 agagN I

Now [ AsA VN = DAZALN) 2 |12 = tr(AgA/N) < ¢ < oo by condition FL. Also, it follows
6o oo oMo

from the discussion below that J and G are orthonormal so that 117Gy | 2=kT' Thus
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Iy H 2R if kp | FOFOD) 22 112 R 0 and |Enp-Hgp 2 B0,
First consider k- | (FO’FO/T) & E/z T I|2 For specificity, let (FO'FO/T) 7 and E/ :  be the
Cholesky factorizations of FO’FO/T and L 1. Because these Cholesky factors are Llpschitz functions
l l - . . .
of FOFO/T and £p 7, kp | FOFO A5 E 117 B 0 kprp | FOFO/T)-£g 117 B 0. This is readily

shown to hold using Markov's inequality and,

4 0,0 2 _ 4 1T IT
Ekprpll (P FO/T)-Lp o= = Ekpep Dy Ly Bl (T 'pio I(FftmtEFTfm)]

0 .0
= (kTTT’T)S“Pe mtZ g =-oo |cov(FQED  Foy 1y FO 0]

which converges to zero by conditions R and M(d)(i1).

Finally, consider the term | HNT'HI’\kIT I 2 Without loss of generality, any F can be written,
F = e 6, + FHELELT MG,

where, under the normalization F’F/T=IkT, GiG1 +GiG2=IkT’ where F L is the orthogonal
complement of Fin SRT and G and G, are respectively rp Xk and (T-rp) XK. Let F* denote a
maximizer of QNT(F) (recall that F* is unique only up to a k Xk rotation). Associate G} and G3

with F* and Gl and G2 with F. Now, for general F

Anp(® = T O PEF(AGAYN)]

— Ol 0 I/Z r Or O 1/2f - . - .
where Ap = (F'F-/T) (AOAOIN)(F FY/T)"*', where the final equality uses the normalization

F’F/TzIkT. We therefore have,
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Qn(F* - Qup(E) = Gy AGY] - t[G{ALG 1 B 0.

Thus there is a kp Xk full rank matrix J such that Gl asymptotically equals G}J, where
J'GY'G{J/T =1y ForJ thus defined, | Hyp-Hifr 1% = «l(G,-GYIy ApG, -G B
0. Finally recall that | (Agag/N)-D B0 and | EVEY/T)-Lg 1180, Thus | Hy-HIB 0, where H =

R’EI/IZJ'TD where R=J'GY’, and also | Ap-E'E B'K DZF T"BO -

Next turn to theorem 2. It is useful first to set out some additional notation and preliminary
results. When q>>r, it is convenient to consider forecasts based on F rather than F (this is done
without loss of generality because they have identical column spaces). Partition F as
£ = [F? ], where F% is T xr and [ is Tx(g-r), where the column space of F? equals the
column space of the first r eigenvectors of N'1 y 1‘_:1: lgixi, and the columns of Fb are (in order)
the next g-r eigenvectors of this matrix. The uniqueness of the eigenvectors implies that, given X,
the column space of F? does not depend on q as long as g =r1. The specific rotation of these first r
eigenvectors adopted here is F2 = ﬁa(Hf\‘]T)'l, where £2 denotes £ estimated with k=r and
le\ilT is the corresponding Hyyp matrix from theorem 1. This rotation is also made without loss of
generality and does not depend on  for ¢=1. In this notation, theorem 1 implies that
spsup I 120,

The following lemma is used in the proof of theorem 2.

Lemma A2.
Under the assumptions of theorem 2,
. : -2 . -10,
(a) Let x be a Tx 1 random vector with plim | T" x| < o and plim 1T E x| <.
Then dpyp| ' (Pga - PRo)x/T| Bo.
(b) 5NT6’F0’P1":bFOB/T By
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(©) Bype'Ppee/T B O
(d) dppy'Proy/T B0
(©) Syr!y (Pga - Ppo)y/T| B0
® dnply' (P - PROY/T| B 0.

Proof

(@) let Vg = FUFOT, v o=x'FUT, V,, = X FYT, V,, = FUFYT, etc. Then,

Sn | X' PraPE/T] < Snp DV, Vo IV L1V,
+ oIVl TV Ve 1TV, |

+ ONT 1V I Voo Il VeaVxo [

By condition M(d), | Vggll <1 Y24 and | VOO I <. Also, SNT 1 Vxa Vol
< BT"%x oy psup | E2FON B 0, and sl Voo Vgl < gy | B0 E-FO/T
+ 26yl @ F%FT| B 0. By the continuity of the inverse, Sl VOO || Bo. By

assumption, || T “2y )| and | Vox | are Op(l). The result follows.

(b) Use FEP =0 (o write, Mg = I-Pga-Pgb = Mpa-Pgb, 50 X'Mpax = x'Ppox + x'Mpx >

x'Plabx. Also, X’Mf;-ax = X'Mpox + x’(PFo-PI*;a)x. Thus, SNTx’Pl';bx/T < BNTX’MFox/T +

S p| X' (PEa-Ppo)x| /T. Now let x = Fo. Then §F"MoF 8 = 0 and byl B'F0 (Prs-ProFOs/T| B
0 by part a of this lemma, because | T 2x|| = | T*FO8]2 B 8'Eg 18 < oo and

1Vouh = ITEVEO81 B o p8ll < o) thus sppB FOPpeElBT B 0.

(c) This follows because €, | Is a martingale difference sequence with respect to {Xt’ Ve Foo Xt

Yi-1> Fi_1---} and because Pgb is idempotent with rank g-r.
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(d) BNTy’P}aby/T < [(BNTB 'FO’PIabl-"‘Oﬁ/’I‘)l/2 + (5NTE'P1';bE/T)1/2]2, which converges in probability

to zero by parts (b) and (c).
(e) This follows from (a) with x=y because | T2y |2 B Ey? and | T'FOy| 2 |5 181
(f) This follows from (d) and (€).

Proof of theorem 2

(a) Letéy = yBOFC, where 30 = EVFOLED"y), and write
22 = @em00m + (Ot + [0z,
Consider the three bracketed terms separately.
(i) €'e/T-€ ’EOIT = y'(Pg - Pro)y/T Bo by lemma A2(f).
(i) The moment conditions imply that BORB, from which it follows that EO’EO/T-e’e/T Bo.
(iii) This follows from the moment assumptions on €. O
(b)The proof proceeds by showing (i) Prﬁ> r]—0 and (ii} Pr[?< r]-=0, from which it follows that
Pr[?=r]—>l. The results ai(ﬂgo% follows from the consistency of r and from part (a) of this
theorem.
(i) This holds trivially if k=r so suppose that k>r1. Now

Prir>r] < Prming 4y 1 ICq<IC
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< Lt _ps 1 PrlonTCLIC) <]
= TE 4 PNINGE@ITE) + (qonre(D) < 0]

By assumption, Gypg(T)>e. Thus, because (g-r) is positive, to prove Pr[r > r]-0 it suffices to show
that 8y pIn[02(@)/62(1)] B O for g=r+1,... k. But because () <52 (c-1) < ew0 <T(1), it

suffices to show this for g=k. Now,

SN In[6209/62(0)] = Sygplnl L+ {p (@2 (002N G2m} ]

= Spinll + {1y PRoy/T)/62(1)} oyl

From part (a), 3%(r)9>02 , and from Lemma A2(d), BNT(y’Pf;by/T)BO, so the final expression

above converges to zero in probability and the desired result follows. O

(ii) This holds trivially if r=1 so suppose that r>1. Following the reasoning in (i), it suffices to show
that Pr[ICqsICr]eO, 1<q<r. Now ICq—ICr = ln{[é%(q)/&%(r)] + (g-r)g(T)}. Because g(T)=0 and
4(1)Ba?, PrIC ¢ SIC 0 if 52()-62()Bd>0. From theorem 1, sup; | B r-HypE' 180,

where Hy is g Xr and HNTEH. Thus

2w = T8 F 8 - TIEVPerds + 0,(1)
= 7 EOF08- T IR0 Progy FO8 + op(1)

—_— ’ _ ? hl 1] _1

The term in brackets in the final line is positive definite, so for general 3,

6’[}.IF,T - EF’TH’(HEF’TH’)'IHZF’TM >0, which yields the desired result. []

- 48 -



Appendix B: Data Description

This appendix lists the time series used to construct the diffusion index forecasts discussed in secti(_)n
5. The format is: series number; series mnemonic; data span used; transformation code; and brief
series description. The transformation codes are: 1 = no transformation; 2 = first difference; 4 =
logarithm; 5 = first difference of logarithms. An asterisk after the date denotes a series which is
available for less than the full period and thus was included in the unbalanced panel but not the
balanced panel. The series were either taken directly from the DRI-McGraw Hill Basic Economics
database, in which case the original mnemonics are used, or they were produced by authors’
calculations based on data from that database, in which case the authors calculations and original
DRI/McGraw series mnemonics are summarized in the data description field. The following
abbreviations appear in the data definitions: SA = seasonally adjusted; NSA = not seasonally

adjusted; SAAR = seasonally adjusted at an annual rate; FRB = Federal Reserve Board,;

Real cutput and income (Qut)

.IP 1950:01-1997:08 5 INDUSTRIAL PRODUCTION: TOTAL INDEX (1992=100,5A)

. IPP 1959:01-1997:09 S INDUSTRIAL PRODUCTION: PRODUCTS, TOTAL (1992=100,5A)

. IPF 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: FINAL PRODUCTS (1992=100.5A)

.IPC 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: CONSUMER GOODS (1992=100,8A)

JIPCD  1959:01-1997:09 5 INDUSTRIAL PRODUCTION: DURABLE CONSUMER GOODS (1992=100,SA)
_IPCN  1959:01-1997:09 5 INDUSTRIAL PRODUCTION: NONDURABLE CONDSUMER GOODS (1992=100,SA)
. IPE 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: BUSINESS EQUIPMENT (1992=100,5A}

. IPI 1959:01-1997-:09 5 INDUSTRIAL PRODUCTION: INTERMEDIATE PRODUCTS (1992=100,5A)

. IPM 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: MATERIALS (1992=100,5A)

IPMD 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: DURABLE GOODS MATERIALS (1992= 100,SA)
_IPMND  1959:01-1997:09 5 INDUSTRIAL PRODUCTION: NONDURABLE GOODS MATERIALS (1992=100,SA)
CIPMFG  1959:01-1997:09 5 INDUSTRIAL PRODUCTION: MANUFACTURING (1992=100,5A)

. IPD 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: DURABLE MANUFACTURING (1992=100,SA)

. IPN 1959:01-1997:09 5 INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING (1992= 100,SA)
CIPMIN  1959:01-1997:09 5 INDUSTRIAL PRODUCTION: MINING (1992=100,54)

CIPUT  1959:01-1997:09 5 INDUSTRIAL PRODUCTION: UTILITIES (1992-=100,5A)

- IPX 1967:01-1997:09* I CAPACITY UTIL RATE: TOTAL INDUSTRY (% OF CAPACITY.SA)FRB)
_IPXMCA  1959:01-1997:09 1 CAPACITY UTIL RATE: MANUFACTURING,TOTAL(% OF CAPACITY,SA)FRB)
CIPXDCA  1967:01-1997:09%* 1 CAPACITY UTIL RATE: DURABLE MFG (% OF CAPACITY ,SAXFRB)

CIPXNCA  1967:01-1997:00% 1 CAPACITY UTIL RATE: NONDURABLE MFG (% OF CAPACITY ,SA)FRB)
CIPXMIN  1967:01-1997:09% 1 CAPACITY UTIL RATE: MINING (% OF CAPACITY,5A)(FRB)

G0 =~ v B W b =

PO T = e e e b e e e = D
—_0 D 00 =~ b W=D

22 IPXUT  1967:01-1997:09% 1 CAPACITY UTIL RATE: UTILITIES (% OF CAPACITY,SA)XFRB)
23. PMI 1959:01-1997:09 1 PURCHASING MANAGERS’ INDEX (5A)
24, PMP 1959:01-1997:09 1 NAPM PRODUCTION INDEX (PERCENT)

b
wn

.GMPYQ 1959:01-1997:09 5 PERSONAL INCOME (CHAINED) (SERIES #52) (BIL 92%,SAAR)
. GMYXPQ 1959:01-1997:09 5 PERSONAL INCOME LESS TRANSFER PAYMENTS (CHAINED) (#51) (BIL 923,5SAAR)

[
o
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27. SIPCD  1959:01-1997:09 1 Spread IPCD - IP
28. SIPMND 1959:01-1997:09 1 Spread [IPMND - IP
29. SIPUT  1959:01-1997:09 1 Spread IPUT - IP

Employment and hours (Emp}

30. LHEL  1959:01-1997:09 5 INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967=100;5A)

31. LHELX 1959:01-1997:09 4 EMPLOYMENT: RATIO; HELP-WANTED ADS:NO. UNEMPLOYED CLF

32. LHEM  1959:01-1997:09 5 CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS.,5A)

33. LHNAG 1959:01-1997:09 5 CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC.INDUSTRIES (THOUS.,5A)
34. LHUR  1959:01-1997:09 1 UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & GVER (%,5A)

35. LHU680 1959:01-1997:09 1 UNEMPLOY.BY DURATION: AVERAGE(MEAN)DURATICN IN WEEKS (SA)

36. LHU5  1959:01-1997:09 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.LESS THAN 5 WKS (THOUS.,5A)
37. LHUI4 1959:01-1997:09 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.5 TO 14 WKS (THOUS.,SA)

38. LHUIS  1959:01-1997:09 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 WKS + (THOUS..SA)

39. LHU26 1959:01-1997:09 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.15 TO 26 WKS (THOUS.,SA)

40. LHU27 1959:01-1997:09 1 UNEMPLOY.BY DURATION: PERSONS UNEMPL.27 WKS + (THOUS,5A)

41. LHCH  1959:01-1995:02* 1 AVERAGE HOURS OF WORK PER WEEK (HOUSEHOLD DATA)(SA)

42. LPNAG 1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: TOTAL (THOUS.,SA)

43, LP 1959:01-1997:09 5 EMPLOYEES ON NONAG PAYROLLS: TOTAL, PRIVATE (THOUS,SA)

44, LPGD  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: GOODS-PRODUCING (THOUS.,SA}

45. LPMI  1959:01-1997:09 S5 EMPLOYEES ON NONAG. PAYROLLS: MINING (THOUS.,SA)

46. LPCC  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: CONTRACT CONSTRUCTION (THOUS.,SA)
47. LPEM  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: MANUFACTURING (THOUS.,SA)

48. LPED  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: DURABLE GOODS (THOUS.,5A)

49. LPEN  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: NONDURABLE GOODS (THQOUS..SA)

50. LPSP  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: SERVICE-PRODUCING (THOUS .,SA)

51. LPTU  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: TRANS. & PUBLIC UTILITIES (THOUS.,SA)
52. LPT 1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: WHOLESALE & RETAIL TRADE (THOUS.,SA)
53. LPFR  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: FINANCE,INSUR.&REAL ESTATE (THOUS.,SA
54. LPS 1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: SERVICES (THOUS.,SA)

55. LPGOV  1959:01-1997:09 5 EMPLOYEES ON NONAG. PAYROLLS: GOVERNMENT (THOUS.,5A)

56. LW 1964:01-1997:09* 2 AVG. WEEKLY HRS. OF PROD. WKRS.: TOTAL PRIVATE (SA)

57. LPHRM 1959:01-1997:09 1 AVG. WEEKLY HRS. OF PRODUCTION WKRS.: MANUFACTURING (SA)

58. LPMOSA 1959:01-1997:09 1 AVG. WEEKLY HRS. OF PROD. WKRS.: MFG.,OVERTIME HRS. (SA)

59, PMEMP 1959:01-1997:09 1 NAPM EMPLOYMENT INDEX (PERCENT)

Real retail, manufacturing and trade sales (RTS)

60. MSMTQ  1959:01-1997:09 5 MANUFACTURING & TRADE: TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)

61. MSMQ  1959:01-1997:09 5 MANUFACTURING & TRADE:MANUFACTURING;TOTAL(MIL OF CHAINED 1992 DOLLARS)(SA)
62. MSDQ  1959:01-1997:09 5 MANUFACTURING & TRADE:MFG; DURABLE GOODS (MIL OF CHAINED 1992 DOLLARS)(SA)
63. MSNQ  1959:01-1997:09 5 MANUFACT. & TRADE:MFG;NONDURABLE GOODS (MIL OF CHAINED 1992 DOLLARS)SA)

64. WTQ 1959:01-1997:0¢ 5§ MERCHANT WHOLESALERS: TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)

65. WIDQ  1959:01-1997:09 5 MERCHANT WHOLESALERS:DURABLE GOODS TOTAL (MIL OF CHAINED 1992 DOLLARS)(SA)
66. WINQ  1959:01-1997:09 5 MERCHANT WHOLESALERS:NONDURABLE GOODS (MIL OF CHAINED 1992 DOLLARSXSA)

67. RTQ 1959:01-1997:09 5 RETAIL TRADE: TOTAL (MIL OF CHAINED 1992 DOLLARS)SA)

68. RTNQ 1959:01-1997:09 5 RETAIL TRADE:NONDURABLE GOODS (MIL OF 1992 DOLLARSXSA)

Consumption (PCE)
69. GMCQ  1959:01-1997:09 5 PERSONAL CONSUMFTION EXPEND (CHAINED) - TOTAL (BIL 923,SAAR)

70. GMCDQ  1959:01-1997:09 5 PERSONAL CONSUMPTION EXPEND (CHAINED) - TOTAL DURABLES (BIL 928,.SAAR)
71. GMCNQ  1959:01-1997:09 5 PERSONAL CONSUMPTION EXPEND (CHAINED) - NONDURABLES (BIL 92%$.SAAR)
72, GMCSQ  1959:01-1997:09 5 PERSONAL CONSUMPTION EXPEND (CHAINED) - SERVICES (BIL 923,SAAR)

73. GMCANQ 1959:01-1997:09 5 PERSONAL CONS EXPEND (CHAINED) - NEW CARS (BIL 923,SAAR)

Housing starts and sales (HSS)

74. HSFR  1959:01-1997:09 4 HOUSING STARTS:NONFARM(1947-58); TOTAL FARM&NONFARM(1959-}THOUS.,5A
75. HSNE  1959:01-1997:09 4 HOUSING STARTS:NORTHEAST (THOUS.U.)S.A.

76. HSMW  1959:01-1997:09 4 HOUSING STARTS:MIDWEST(THOUS.U.)S.A.

77. HSSOU  1959:01-1997:09 4 HOUSING STARTS:SOUTH (THOUS.U.)S.A.
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78. HSWST  1959:01-1997:09 4 HOUSING STARTS:WEST (THOUS.U.)S.A.

79. HSBP  1959:01-1997:09 4 BUILDING PERMITS FOR NEW PRIVATE HOUSING UNITS (THOUS.)

80. HSBR  1959:01-1997:09 4 HOUSING AUTHORIZED: TGTAL NEW PRIV HOUSING UNITS (THOUS.,SAAR)
81. HSBNE 1960:01-1997:09* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:NORTHEAST(THOU.U.)5.A

82 HSBMW  1960:01-1997:09* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:MIDWEST(THOU.U.)S.A.

83. HSBSOU 1960:01-1997:09%* 4 HOUSES AUTHORIZED BY BUILD. PERMITS:SOUTH(THOU.U.)5.A.

84. HSBWST 1960:01-1997:09* 4 HOUSES AUTHORIZED BY BUILD. PERMITS: WEST(THOU.U.)5.A.

85. HNS 1963:01-1997:09* 4 NEW 1-FAMILY HOUSES SOLD DURING MONTH (THOUS,SAAR)

86. HNSNE  1973:01-1997:09* 4 ONE-FAMILY HOUSES SOLD:NORTHEAST(THOU.U..8.A))

87. HNSMW  1973:01-1997:09* 4 ONE-FAMILY HOUSES SOLD:MIDWEST(THOU.U.,S.A.}

83. HNSSOU 1973:01-1997:09* 4 ONE-FAMILY HOUSES SOLD:SOUTH(THOU.U.,5.A.)

89. HNSWST 1973:01-1997:09* 4 ONE-FAMILY HOUSES SOLD:WEST(THOU.U.,S.A.)

90. HNR 1963:01-1997:09* 4 NEW 1-FAMILY HOUSES, MONTH'S SUPPLY @ CURRENT SALES RATE(RATIO)
91. HNIV  1963:01-1997:09* 4 NEW 1-FAMILY HOUSES FOR SALE AT END OF MONTH (THOUS,5A)

92. HMOB  1959:01-1997:09 4 MOBILE HOMES: MANUFACTURERS’ SHIPMENTS (THOUS.OF UNITS,SAAR)
93. CONTC  1964:01-1997:09* 4 CONSTRUCT.PUT IN PLACE:TOTAL PRIV & PUBLIC 19873(MIL$,SAAR)

94. CONPC  1964:01-1997:09% 4 CONSTRUCT PUT IN PLACE:TOTAL PRIVATE 1987$(MIL$,SAAR)

95. CONQC  1964:01-1997:09* 4 CONSTRUCT.PUT IN PLACE:PUBLIC CONSTRUCTION 87$(MIL$ SAAR)

96. CONDOY 1959:01-1997:0¢ 4 CONSTRUCT.CONTRACTS: COMM'L & INDUS BLDGS(MIL.SQ.FT.FLOOR SP_;5A)

Real inventories and inventory-sales ratios (Inv)

97. IVMTQ  1959:01-1997:09 5 MANUFACTURING & TRADE INVENTORIES: TOTAL (MIL OF CHAINED 1992)}(3A)

98. IVMFGQ 1959:01-1997:09 5 INVENTORIES, BUSINESS, MFG (MIL OF CHAINED 1992 DOLLARS, SA)

99. IVMFDQ 1959:01-1997:09 5 INVENTORIES, BUSINESS DURABLES (MIL OF CHAINED 1992 DOLLARS, SA)

100. IVMFNQ  1959:01-1997:09 5 INVENTORIES, BUSINESS, NONDURABLES (MIL OF CHAINED 1992 DOLLARS, 8A)

101. IVWRQ  1959:01-1997:09 5 MANUFACTURING & TRADE INV:MERCHANT WHOLESALERS (MIL OF CHAINED 1992 DOLLARS)
102. IVRRQ  1959:01-1997:09 5 MANUFACTURING & TRADE [INV:RETAIL TRADE (MIL OF CHAINED 1992 DOLLARS)SA)
103. IVSRQ  1959:01-1997:09 2 RATIO FOR MFG & TRADE: INVENTORY/SALES (CHAINED 1992 DOLLARS, SA)

104. IVSRMQ  1959:01-1997:09 2 RATIO FOR MFG & TRADE:MFG:INVENTORY/SALES (87$)(8.A))

105. IVSRWQ 1959:01-1997:09 2 RATIO FOR MFG & TRADE:WHOLESALER;INVENTORY/SALES(87$)(S.A.)

106. IVSRRQ 1959:01-1997:09 2 RATIO FOR MFG & TRADE:RETAIL TRADE;INVENTORY/SALES(87$)(S.A.)

107. PMNV  1959:01-1997:09 1 NAPM INVENTORIES INDEX (PERCENT)

Orders and unfitled orders (Ord)

108. PMNO  1959:01-1997:09 1 NAPM NEW ORDERS INDEX (PERCENT)

109. PMDEL 1959:01-1997:09 1 NAPM VENDOR DELIVERIES INDEX (PERCENT)

110. MOCMQ  1959:01-1997:09 5 NEW ORDERS (NET) - CONSUMER GOODS & MATERIALS, 1992 DOLLARS (BCI)
111. MDOQ  1959:01-1997:09 5 NEW ORDERS, DURABLE GOODS INDUSTRIES, 1992 DOLLARS (BCD)

112. MSONDQ 1959:01-1997:09 5 NEW ORDERS, NONDEFENSE CAPITAL GOODS, IN 1992 DOLLARS (BCI

113. MO 1959:01-1997:0¢ 5 MEFG NEW ORDERS: ALL MANUFACTURING INDUSTRIES, TOTAL (MIL$,SA)

114. MOWU  1959:01-1997:09 5 MFG NEW ORDERS: MFG INDUSTRIES WITH UNFILLED ORDERS(MILS$ SA)

115. MDO 1959:01-1997:00 5 MFG NEW ORDERS: DURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)

116. MDUWU  1959:01-1997:09 5 MFG NEW ORDERS:DURABLE GOODS INDUST WITH UNFILLED ORDERS(MILS$,SA)
117. MNOQ 1959:01-1997:09 5 MFG NEW ORDERS: NONDURABLE GOODS INDUSTRIES, TOTAL (MILS,5A)

118. MNOU  1959:01-1997:09 5 MFG NEW ORDERS: NONDURABLE GDS IND.WITH UNFILLED ORDERS(MILS,.SA)
119. MU 1959:01-1997:08 5 MFG UNFILLED ORDERS: ALL MANUFACTURING INDUSTRIES, TOTAL (MIL$,SA)
120. MDU 1959:01-1997:09 5 MFG UNFILLED ORDERS: DURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)

121. MNU 1059:01-1997:09 5 MFG UNFILLED ORDERS: NONDURABLE GOODS INDUSTRIES, TOTAL (MIL$,SA)
122. MPCON  1959:01-1997:09 § CONTRACTS & ORDERS FOR PLANT & EQUIPMENT (BIL3,SA)

123. MPCONQ 1959:01-1997:09 5 CONTRACTS & ORDERS FOR PLANT & EQUIPMENT IN 1992 DOLLARS (BCI)

Stock prices (SPr)
124. FSNCOM  1959:01-1997:09 5 NYSE COMMON STOCK PRICE INDEX: COMPOSITE (12/31/65=50)

125. FSNIN  1966:01-1997:06* 5 NYSE COMMON STOCK PRICE INDEX: INDUSTRIAL (12/31/65=50)

126. FSNTR  1966:01-1997:09% 5 NYSE COMMON STOCK PRICE INDEX: TRANSPORTATION (12/31/65 =30)
127. FSNUT  1966:01-1997:09* 5 NYSE COMMON STOCK PRICE INDEX: UTILITY (12/31/65=50)

128. FSNFI  1966:01-1997:09* 5 NYSE COMMON STOCK PRICE INDEX: FINANCE (12/31/65=50)

120. FSPCOM  1959:01-1997:09 5 S&P'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43=10)

130. FSPIN  1959:01-1997:09 5 S&P'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43=10)

- 51 -



131. FSPCAP 1959:01-1997:09 5 S&P’S COMMON STOCK PRICE INDEX: CAPITAL GOODS (1941-43=10)
132. FSPTR  1970:01-1997:09* 5 S&P'S COMMON STOCK PRICE INDEX: TRANSPORTATION (1970=10)
133. FSPUT  1959:01-1997:09 5 S$&P’S COMMON STOCK PRICE INDEX: UTILITIES (1941-43=10)

134. FSPFI  1970:01-1997:09* 5 S&P’S COMMON STOCK PRICE INDEX: FINANCIAL (1970=10)

135. FSDXP  1959:01-1997:09 ! S&P'S COMPOSITE COMMON STOCK: DIVIDEND YIELD (% PER ANNUM)
136. FSPXE  1959:01-1997:09 1 S&P'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%.NSA)
137. FSNVV3 1974:01-1997:07* 5 NYSE MKT COMPOSITION:REPTD SHARE VOL BY SIZE,5000+ SHRS, %

Exchange rates (EXR)

138. EXRUS  1959:01-1997:09 5 UNITED STATES;EFFECTIVE EXCHANGE RATE(MERM)YINDEX NO.}
139, EXRGER 1959:01-1997:09 5 FOREIGN EXCHANGE RATE: GERMANY (DEUTSCHE MARK PER U.5.§)
140. EXRSW  1959:01-1997:09 5 FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.5.5)
141. EXRJAN 1959:01-1997:09 S5 FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.5.%)

142. EXRUK  1959:01-1997:09 5 FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND)
143. EXRCAN 1959:01-1997:09 5 FOREIGN EXCHANGE RATE: CANADA (CANADIAN § PER U.5.$)

Interest rates (Inf)
144. FYFF  1959:01-1997:09 2 INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM,N5A)

145. FYCP  1959:01-1997:09 2 INTEREST RATE: COMMERCIAL PAPER, 6-MONTH (% PER ANNUM,N5A)

146. FYGM3 1059:01-1997:09 2 INTEREST RATE: U.S. TREASURY BILLS,SEC MKT,3-MO.(% PER ANN,NSA)
147. FYGM6 1959:01-1997:09 2 INTEREST RATE: U.S.TREASURY BILLS,SEC MKT,6-MO.(% PER ANN,NSA)
148. FYGT! 1959:01-1997:09 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,1-YR.(% PER ANN,NSA)
149. FYGTS 1959:01-1997:09 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES,S-YR.(% PER ANN,NSA)
150. FYGT10 1959:01-1997:09 2 INTEREST RATE: U.S.TREASURY CONST MATURITIES, 10-YR.(% PER ANN,NSA)
151. FYAAAC 1959:01-1997:09 2 BOND YIELD: MOODY'S AAA CORPORATE (% PER ANNUM)

152. FYBAAC 1959:01-1997:09 2 BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM)

153. FWAFIT 1973:01-1994:04* | WEIGHTED AVG FOREIGN INTEREST RATE(%,5A)

154. FYFHA 1959:01-1997:09 2 SECONDARY MARKET YIELDS ON FHA MORTGAGES (% PER ANNUM)

155. SFYCP 1959:01-1997:09 1 Spread FYCP - FYFF

156. SFYGM3 1959:01-1997:09 1 Spread FYGM3 - FYFF

157. SFYGM6 1959:01-1997:09 1 Spread FYGMG6 - FYFF

158. SFYGT1 1959:01-1997:09 1 Spread FYGTI - FYFF

159. SEFYGT5 1959:01-1997:09 1 Spread FYGTS - FYFF

160. SFYGTI0 1959:01-1997:09 1 Spread FYGT10 - FYFF

161. SFYAAAC 1959:01-1997:09 1 Spread FYAAAC - FYFF

162. SFYBAAC 1959:01-1997:09 1 Spread FYBAAC - FYFF

163. SFYFHA 1959:01-1997:09 1 Spread FYFHA - FYFF

Money and credit quantity aggregates {(Mon)

164. FM1 1059:01-1997:09 5 MONEY STOCK: M1(CURR, TRAV.CKS,DEM DEP,OTHER CK’'ABLE DEP)(BILS,5A)
165. FM2 1959:01-1997:09 5 MONEY STQCK:M2(M1+O'NITE RPS,EURQ$,G/P&B/D MMMFS&SAV&SM TIME DEP(BILS,
166. FM3 1959:01-1997:09 5 MONEY STOCK: M3(M2+LG TIME DEP,TERM RP'S&INST ONLY MMMFS)BILS,SA)
167. FML 1959:01-1997:09 5 MONEY STOCK:L(M3 + OTHER LIQUID ASSETS) (BILS.SA)

168. FM2DQ  1959:01-1997:09 5 MONEY SUPPLY - M2 IN 1992 DOLLARS (BCD)

169. EMFBA  1959:01-1997:09 5 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MILS,5A)

170. EMBASE 1959:01-1997:09 5 MONETARY BASE, ADJ FOR RESERVE REQ CHGS(FRB OF ST .LOUIS)BIL$,SA)
171. FMRRA  1959:01-1997:09 5 DEPOSITORY INST RESERVES:TOTAL,AD] FOR RESERVE REQ CHGS(MILS$,SA)
172. EMRNBA 1959:01-1997:09 5 DEPOSITORY INST RESERVES:NONBORROWED,ADJ RES REQ CHGS(MILS,SA)
173. EMRNBC  1959:01-1997:09 5 DEPOSITORY INST RESERVES:NONBORROW +EXT CR,ADJ RES REQ CGS(MIL$.SA)
174. FMFBA  1959:01-1997:09 5 MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES(MIL$,SA)

175. FCLS  1973:01-1997:09* 5 LOANS & SEC @ ALL COML BANKS: TOTAL (BILS,SA)

176. FCSGV  1973:01-1997:00* 5 LOANS & SEC @ ALL COML BANKS: U.S.GOVT SECURITIES (BIL$,SA)

177. FCLRE  1973:01-1997:09* 5 LOANS & SEC @ ALL COML BANKS: REAL ESTATE LOANS (BIL$,5A)

178. FCLIN  1973:01-1997:09* 5 LOANS & SEC @ ALL COML BANKS: LOANS TO INDIVIDUALS (BIL$,SA)

179. FCLNBF 1973:01-1994:01* § LOANS & SEC @ ALL COML BANKS: LOANS TO NONBANK FIN INST(BIL$,SA)
180. FCLNQ  1959:01-1997:0¢ 5 COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1992 DOLLARS (BCI)
181. FCLBMC 1959:01-1997:09 1 WKLY RP LG COM'L BANKS:NET CHANGE COM'L & INDUS LOANS(BILS,.SAAR)
182. CCI30M  1959:01-1995:09*% 1 CONSUMER INSTAL.LOANS: DELINQUENCY RATE,30 DAYS & OVER, (%.SA)
183. CCINT  1975:01-1995:09% 1 NET CHANGE IN CONSUMER INSTAL CR: TOTAL (MIL%$,SA)
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184. CCINV  1975:01-1995:09* 1 NET CHANGE IN CONSUMER INSTAL CR: AUTOMOBILE (MIL$,SA)

185.

CCINRV 1980:01-1995:09* 1 NET CHANGE IN CONSUMER INSTAL CR: REVOLVING(MILS.SA)

Price indexes (Pri)

186.
187.
188.
189.
190.
191.
192.
193.
194.
195.
196.
197.
198.
199.
200.
201,
202.
203.
204.
205.
206.
207.
208.
209.
210.
211.

PMCP  1959:01-1997:09 1 NAPM COMMODITY PRICES INDEX (PERCENT)

PWESA  1959:01-1997:09 5 PRODUCER PRICE INDEX: FINISHED GOODS (82=100,5A}

PWFCSA 1959:01-1997:09 5 PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82=100,54)

PWIMSA 1959:01-1997:09 5 PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS(82=100,5A)
PWCMSA 1959:01-1997:09 5 PRODUCER PRICE INDEX:CRUDE MATERIALS (82=100,5SA)

PWFXSA 1967:01-1997:09* 5 PRODUCER PRICE INDEX: FINISHED GOODS EXCL. FOODS (82 =100,SA)
PWIG0A 1974:01-1997:09* 5 PRODUCER PRICE INDEX: CRUDE MATERIALS LESS ENERGY (82=100,5A)
PWI50A 1974:01-1997:09%# 5 PRODUCER PRICE INDEX: CRUDE NONFOOD MAT LESS ENERGY (82=100,5A)
PSM99Q 1959:01-1997:09 5 INDEX OF SENSITIVE MATERIALS PRICES (1990 = 100)(BCI-99A)

PUNEW  1959:01-1997:09 5 CPI-U: ALL ITEMS (82-84=100,5A)

PUSL  1967:01-1997:09* 5 CPI-U: FOOD & BEVERAGES (82-84=100,5A)

PUH 1967:01-1997:09% 5 CPl-U: HOUSING (82-84=100,5A)

PUS3  1959:01-1997:09 5 CPI-U: APPAREL & UPKEEP (82-84=100,5A)

PUS4  1959:01-1997:09 5 CPI-U: TRANSPORTATION (82-84=100,5A)

PUS5  1959:01-1997:09 5 CPL-U: MEDICAL CARE (82-84=100.3A)

PUC 1959:01-1997:0¢ 5 CPI-U: COMMODITIES (82-84=100,54)

PUCD  1959:01-1997:09 5 CPI-U: DURABLES (82-84=100,5A)

PUS 1959:01-1997:09 5 CPI-U: SERVICES (82-84=100,5A)

PUXF  1959:01-1997:09 5 CPI-U: ALL ITEMS LESS FOOD (82-84=100.5A)

PUXHS 1959:01-1997:09 5 CPI-U: ALL ITEMS LESS SHELTER (82-84 =100,5A}

PUXM  1959:01-1997:09 5 CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84=100,5A)

PCGOLD 1975:01-1997:09% 5 COMMODITIES PRICE:GOLD,LONDON NCON FIX,AVG OF DAILY RATE,$ PER OZ
GMDC  1959:01-1997:09 5 PCE,IMPL PR DEFL:PCE (1987=100)

GMDCD  1959:01-1997:09 5 PCE,IMPL PR DEFL:PCE; DURABLES (1987=100)

GMDCN  1959:01-1997:09 5 PCE,IMPL PR DEFL:PCE; NONDURABLES (1987 =100)

GMDCS  1959:01-1997:09 5 PCE,IMPL PR DEFL:PCE; SERVICES (1987=100)

Average hourly earnings (AHE)

212,
213.
214.
215.
216.
217.
218.

LEH 1964:01-1997:09* 5 AVG HR EARNINGS OF PROD WKRS: TOTAL PRIVATE NONAGRIC (3.5A)
LEHCC 1959:01-1997:09 5 AVG HR EARNINGS OF CONSTR WKRS: CONSTRUCTION ($,5A)

LEHM  1959:01-1997:09 5 AVG HR EARNINGS OF PROD WKRS: MANUFACTURING (§,5A)

LEHTU 1964:01-1997:09* 5 AVG HR EARNINGS OF NONSUPV WKRS: TRANS & PUBLIC UTIL($,5A)
LEHTT 1964:01-1997:09* 5 AVG HR EARNINGS OF PROD WKRS:WHOLESALE & RETAIL TRADE(SA)
LEHFR 1964:01-1997:09* 5 AVG HR EARNINGS OF NONSUPV WKRS: FINANCE, INSUR,REAL EST($,5A)
LEHS  1964:01-1997:00%* 5 AVG HR EARNINGS OF NONSUPV WKRS: SERVICES (§.5A)

Miscellaneous (Oth)

219.
220.
221.
222.
223,
224.

FSTE  1986:01-1997:09* 5 U.S.MDSE EXPORTS: TOTAL EXPORTS(F.A.S. VALUE)MIL.$,S.A.)

FSTM  1986:01-1997:09* 5 U.S.MDSE IMPORTS: GENERAL IMPORTS(C.I.F. VALUE}MIL.$,5.A.)
FTMD  1986:01-1997:09* 5 U.S.MDSE IMPORTS: GENERAL IMPORTS (CUSTOMS VALUEXMIL$,S.A)
FSTB  1986:01-1997:09* 2 U.S.MDSE TRADE BALANCE:EXPORTS LESS IMPORTS(FAS/CIF)(MIL$,5.A.)
FTB 1086:01-1097:09* 2 U.S.MDSE TRADE BALANCE:EXP.(FAS) LESS IMP.(CUSTOM)(MIL$,S.A.)
HHSNTN 1959:01-1997:09 1 U. OF MICH. INDEX OF CONSUMER EXPECTATIONS(BCD-83)
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Table 2

Simulated Out-Of-Sample Forecasting Results:

Variables forecasted:
Production.

Industrial Production Growth

In(z

t+12/zt)’ where z
Data are monthly,

is the Index of Industrial

1959:1

1997:9

Entries are the ratio of the MSE of the indicated forecast, to
univariate autoregressive forecast with lag length selected by BIC.

the MSE of a

Forecasting method

Leading-indicator forecasts

using full set of indicators .77

with BIC model selection

Diffusion index forecasts

Factor selection
k = BIC

k=1
k= 2
k = 3
k = 4
k= &
k= 6
k= 7
k= 8
k= 5
k =10
k=11
k=12

0

O 00 QOO oo 0o0oo

.76
.58
.58
.67
.63
.63
.59
.58
.61
.60
.59
.59

.78

balanced panel (N=170)
DI
.54

DIAR
0.56

.79
.61
.59
.67
.64
.63
.58
.58
.60
.59
.59
.59

o O OO0 000 00O o0

unbalanced panel
DI
.54

0

OO0 0000000000

77
.62
.55
.54
.58
.56
.58
.56
.55
.59
.58
.61

(N=224)
DIAR
0.55

.76
.63
.56
.55
.58
.57
.58
.56
.55
.59
.58
.62

O 00O 000 0Q0C o000

Notes: The forecasting
refers to the diffusion

estimation period begins 1960:1;

in 1997:9.

models are described in detail in section 5. DI
index forecasts constructed using only the factors;
DIAR augments this by including lagged values of Aln(zt) as additional
predictors, where the lag length is selected by recursive BIC.

The model
the forecast period begins 1570:1 and ends



Table 3

Simulated Out-Of-Sample Forecasting Results:

CPI Inflation

Variables forecasted: ln(zt+12/zt), where z,
Data are monthly, 1959:1

Entries are the ratio of the MSE of the indicated forecast,

ig the Consumer Price Index.
- 1997:9

to the MSE of a

univariate autoregressive forecast with lag length selected by BIC.

Forecasting method

Leading-indicator forecasts
using full set of indicators .89
with BIC model selection 1.11

Phillips curve forecasts
without wage-price control variable .94
with wage-price control variable .97

Diffusion index forecasts
balanced panel (N=170)}

Factor selection DI DIAR
k = BIC 0.82 0.71
k= 1 2.02 0.88
k = 2 1.21 0.69
k= 3 0.74 0.62
k= 4 0.78 0.63
k= 5 0.74 0.€2
k = 6 0.78 0.66
k= 7 0.84 0.73
k= 8 0.85 0.72
k= 9 0.85 0.73
k = 10 0.85 0.71
k=11 0.85 0.71
k =12 0.86 0.72

unbalanced panel (N=224)

DI
0.

00000000 HN

84

.24
72
.44
.91
.99
.86
.88
.87
.87
.87
.B7
.86

DIAR
0.71

.01
.78
.68
.65
.66
.65
.73
.74
.73
.73
.73
.72

OO0 000 OO0 O C O

Notes: See the notes to table 2.
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