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ABSTRACT

I use natural population variation to identify the effects of class size and composition on
student achievement. I isolate the credibly random component of population variation in each grade
and school district and use this component to generate instrumental variables for class size and
composition. [ also exploit the discontinuous changes in class size that occur when natural
population variation triggers a change in the number of classes in a grade in a school. Discontinuity-
based results are both consistent and precise only when applied to within-district changes in class
size and population. I find that reductions in class size from a base of 15 to 30 students have no
effect on student achievement. The estimates are precise enough to identify improvements in math,
reading, or writing achievement of just 3/100ths of a standard deviation. [ find that the presence of
black students in a class, in an of itself, has no effect on achievement. I demonstrate that estimates
of the effect of racial composition that rely on between-district comparisons suffer from substantial
bias. Finally, I show that more female classes perform significantly better in writing in the 4th
through 8th grades and in math in the 4th grade. Comparison of the effects to average male-female

differences in test scores suggest that gender composition alters classroom conduct.
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[. Introduction

In this study, | use a never-previously-used source of variation in school inputs, natural population
variation, to identify the effects of class size and class composition on student achievement. | isolate the
credibly random component of population variation in each school district and use this component to generate
instrumental variablesfor classsize and classcomposition. By using thissource of variation, this study comes
closer to arandom experiment than previous methods. An added benefit is that natural population variation
generates fluctuations in class size and composition that are in the range relevant to current policy debates.
Moreover, unlike policy experiments with class size such as Tennessee's Project Star, the actorsin the natural
experiment | examine were not aware of being evaluated or mindful of rewards being contingent upon the
outcome. Rea policies that reduce class size, such as Californias 1996 action, rarely contain built-in
evaluations or repercussions, such as the funds being taken away if the policy has no effect. It isimportant
that research mimic theincentivesthat exist under real policies becausethereislittle or no debate over whether
smaller classes provide better opportunities to improve achievement.! Debate focuses, instead, on whether
smaller classes actually do improve achievement, given that schools need not take advantage of improved
opportunities. 1n short, the evidence from natural population variation is directly relevant to policy questions
about the efficacy of class size reductions.

When policy makers--local, state, or federal--want to improve student achievement, class size
reduction is one of the tools they are most likely to use. 1n 1996, the Californialegidature dedicated 1 billion
dollarsto classsizereduction. The administration's 1999 federal budget proposal contained 12 billion dollars
(over 7 years) for the same purpose. Severa states offer incentives for class size reductions in their school
finance laws, and teachers unions frequently ask for reductions in collective bargaining. Because the policy
enjoysamost perennial popularity, classsize hasfallen monotonically in the United States during the twentieth
century. Asaresult, elementary schools averaged 19 students per teacher in the 1997-98 school year.?

Another set of contested policies concern theracial and gender composition of classes. Inrecent years,
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theconsensusthat theideal classroomisco-educational and racially and ethnically integrated has broken down.
The breakdown reflects a scholarly debate over whether peer interactions in integrated, co-educational
classrooms impede or enhance learning by females and members of minority groups.’

One of the key reasons that both class size and class composition policies are controversial isthat the
empirica evidenceis contradictory.* The origin of the empirica controversy is essentially smple. Different
studies use different sources of variation in class size and class composition, and nearly al of these sources
of variation are potentially tainted by correlation with other determinants of student achievement. Very little
of the variation in school inputs is effectively random with respect to student achievement and determinants
of student achievement. The vast mgority of variation in school inputs is the result of choices by parents,
schooling providers, or courts and legidatures; and thisvariation islikely to produce biased results. This may
appear to be an obvious point, but though researchers often claim that the variation they use is not endogenous
to student achievement, they rarely go on to explain where the variation does come from. The processes by
which school inputs are determined should make us doubt that variation in school inputsisrandom unlessthere
is some explicit reason why we should think it is.

Thiscriticism doesnot apply to explicit experimentsthat have random variation built into their designs,
and evidence from experiments like Project Star has manifest advantages.® These advantages are, however,
offset by afew disadvantages. Explicit experiments are rare (tempting interpreters to extrapolate the results
unduly), most experiments take place in devel oping countries (so that the range of inputsis not relevant for the
United States), dataare usually closely held (making it difficult to verify whether the experimental design was
maintained), and--by far most important--the actors in the experiment are aware of it. The actors awareness
has severa effects. First, being evaluated often makes peopl e behave more productively for sometime, even
if the policy under evaluation has no effect (the "Hawthorne effect”). Second, people often try to undo the
randomness of the design. Some principals may attempt to put children who they feel can benefit from more

attention into the small classes. Other principals may assign their best teachersto the small classes or engage
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in extra monitoring of the small classes. Most importantly, the outcome of an explicit experiment generally
determines whether the policy is continued and enacted universally. Thus, the actors have incentivesto make
the policy successful that they would not ordinarily have.

In thisstudy, | use variation in class size and composition that comes from natural randomnessin the
population. Theintuitionis straightforward. Consider a school district that has a population that isin steady
state. Thereis still natural variation in the timing and gender of births such that the entering kindergarten
cohort variessomewhat in size, theratio of femalesto males, and theratio of minoritiesto non-minorities. This
variation is not fully smoothed because there is discreteness in school entry rules (children born between date
X and date Y must enroll in first grade in a particular school year) and because the number of classroomsin
each school is an integer. In districts with big populations, the law of large numbers smooths natural
population variation greatly. Also, abig district can keep class size relatively constant in the face of natural
population variation by managing its teachers and classrooms flexibly. Thus, random population variation
generates only a small amount of empirically useful variation in class size and composition in large districts.
However, in small districts--at the extreme, one classroom per grade--natural population variation trandates
almost directly into differencesin class size and class composition between cohorts. Inasmall district that is
in steady state, one cohort might persistently experience classesthat are small and two-thirdsfemale in grades
one through six, while the subsequent cohort might persistently experience classes that are large and half
female. The different cohorts are essentialy randomly assigned different treatments.

| attempt toisolate the random component of population variation using along panel of dataon school-
age population, enrollment, and birthsin Connecticut school districts. The panel allows meto eliminate nearly
all smooth changes in population: | use just residual population changes that remain after fitting a quartic
function of time separately for each district. Using the data on births, I confirm the results based on
enrollment and eiminate any possihility that the popul ation variation being used isendogenousto revealed class

size. | alsoidentify the class size effect using the fact that class size jJumps abruptly in small schools when a
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classis added to or subtracted from agrade. Such discontinuities in the relationship between class size and
enrollment make natural population variation provide another, independent source of identification--that is,
overidentification—that can be used to test the main results.

The one disadvantage of random, natural population variationisthat it is necessarily transitory from

the individual teacher's point of view.® | discuss this point in interpreting the results on class size.

1. Sourcesof Variation in School | nputs and the Potential for Bias

Parents' choosing school sby choosing their residencesis probably the singlelargest source of variation
in school inputs. Between-district variation in school inputs generated by parental choiceislikely to generate
upward biased estimates of the efficacy of inputs. The same may be said for systematic variation within a
district aover time. For instance, class size reductions will be appear to be more efficacious than they really
are if the types of parents who contribute more to their children's learning choose school districts that offer
smaller class sizes.

Even if we identify parents who have similar attributes, there is ample potential for bias. Parents
choose school inputs endogenoudly, based on their children's ability and prior achievement in school. These
endogenous choices may be compensatory (greater inputs for children who exhibit poor achievement),
reinforcing (greater inputs for gifted children), or both. Thus, when we compare similar parents, the sign of
the bias is ambiguous.

Similarly, we cannot predict the sign of the bias generated by the choices of schooling providers, such
as administrators and teachers. If providers attend more to the demands of parents who contribute more to
their children's learning, inputs and parental contributions will be positively correlated, generating upward
biased estimates of the efficacy of inputs. If, onthe other hand, providers attend moreto children with learning
problems, estimates will be downward biased.

The fina players who determine school inputs are state and federal judges and legidators, who



5
mandate and fund increased school inputs for certain students. Policy makers pursue both compensatory and
reinforcing policies, but they tend to devote the majority of the resources at their disposal to compensatory
policies.” The negative bias resulting from the use of compensatory policies is, however, often offset by
positive omitted variables bias caused by policy-makers simultaneous pursuit of compensatory labor market
policies. For example, policies that decreased racia discrimination in school inputs were implemented
simultaneoudy with policies that decreased racial discrimination in employment.

In short, it is not surprising that the results of empirical studies differ (that is, suffer from different
biases) depending on the source of the variation in school inputs that they use.

Thereisadifference between variation that is not obvioudy biased and variation that has an explicit
reason to be random. The systematic links between school inputs and other determinants of student outcomes
may be obscurewithout the variation ininputs being exogenous. Explicitly articulating and isolating asource
of random variation is preferable to simply eliminating all obvious sources of bias. This point isillustrated
by the debate over Card and Krueger's [1992] paper. They exploit the fact that, within each of the nine U.S.
census regions, residents have experienced a variety of school input levels because they were schooled in a
variety of states at avariety of times. Heckman, Layne-Ferrar, and Todd [1995] show that the variation used
is partly due to selective migration within the United States: able people from states with low returns to skill

move to states with high returns to skills. Such subtle paths for omitted variables bias are easily overlooked.

I11. Empirical Strategy

Intheexpositionthat follows, | consider class size asthe school input, but theempirical strategy works
equally well for class composition. Consider the achievement of studentsin gradei of school j indistrict kin
year t. It is determined by class size as well as unobserved attributes like student ability and parental

contributions to learning. We typically estimate an equation such as:

(1) Ajia=P1 Cije * Xijia B2 * i
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where A is achievement; C is class size; X is a vector of observed student, parent, and community
characteristics, and € is al other determinants of achievement, including the unobserved attributes of the
students, parents, and community. By definition, class size is equal to regular enrollment divided by the
number of classes (properly defined). For all the reasons discussed above, the number of classes, whichisa
policy variable, is a function of student, parent, and community characteristics, observed and unobserved.
Enrollment is partly a function of these characteristics, but it also depends on random variation in the

population of children who are in the age range appropriate for agiven grade in agiven year. Formally,

2 Cijkf Eijk[ = Evijk[(xukt'eijkt) hie

M Koo Bijid - Fije Kijio i Yijo)
where E is enrollment and n is the number of classes. E iswhat enrollment would be if the timing of births
were deterministic, rather than random, functions of a population’'s characteristics. For instance, if parents
could and did time all births precisdly, then enrollment would be deterministic and actua enrollment would
equal E. uisthe variation in enrollment that results from the fact that biology causes random variation in the
timing of births. E and E are functions of student, parent, and community characteristics (X and €). nisnot
only afunction of X and €, but aso of enrollment. That is, the costs and benefits of adding another class
depend not only on how much local parents care about schooling but also on the actual enrollment in any given
year, which is partly random. Thus, the denominator on the far right-hand-side of equation (2) showsthat n
isultimately afunction of X, €, and u. u affects E proportionally, so that equation (2) works for populations

of different sizes.

1. The First Identification Method

uisnot correlated with X and €, which are determinants of achievement, but u is adeterminant of both
E and n, so it is a good instrument for class size. | attempt to isolate u using the fact that the aggregate

characterigtics that affect achievement change much more continuoudly than enrollment does for a particular
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grade in a particular school in a particular year. For instance, while school entry dates make small age
differences between children potentially cause large differencesin the cohort that belongs to each grade-year,
small age differences between adults in a community have only small effects on achievement. Thus, while E
is not static, it does not change abruptly.

We can characterize any E that changes smoothly over time by a grade-school-district-specific
intercept and a grade-school-di strict-specific polynomial in time. (This statement holds equally for the log of

E.) Thatis, we can write;

In(Eijk[) = a0 ralytra2, t2rad t3rad, t 4 or
_ 2 3 4
3 IN(Eje) = a0y ol tra2y t a3t +ad,t®. +In(uy,)

| estimate such an equation separately for each grade-school-district.® | show results that use up to aquartic
in time because quartics appear to capture all of the smooth variation over time in enrollment within a grade
within adistrict. The estimated residual gives us a consistent estimate of u, which is a good instrument for
classsize.

The method just described exploits the fact that the aggregate characteristics that affect achievement,
X and e, change much more continuoudly than enrollment in a specific grade-school-time does. Y et, because
parents can respond directly to the class size they observe their child experiencing, the method |eaves open a
small routefor bias. Consider a parent who observesthat his child's classes are unusually large for his grade-
school-district. Even if the cause of the large classesis random population variation, the parent might decide
to send his child to a private school or attempt to have his child held back a grade or moved up agrade. Such
reactions, although probably rare, would have the potential to make X and e endogenousto u. Fortunately, a
simple modification of the method eiminates this problem.

Rather than use enrollment in agrade-school -district asthe dependent variablein equation (3), one can
use the population of children predicted to be in a grade-school-district based on births that occurred in the

district such that, if the babies grew up and enrolled according to the birth date rule, they would bein the grade.



| cal thisvariable "births-in-grade” and represent it by B. To summarize, the estimated residual from
4 IN(By) = &0, ~81, t+82,, 8 2+&3, 1 3+, t 4+ +In(uy,)
gives us a credibly consistent estimator for u that has no potentia to be correlated with X or e through their
possible endogeneity to realized class size.

If schools never added or subtracted classes, then we would expect to find a coefficient equal to one
if In(C) were regressed on an estimate of In(u). Random population variation can, however, cause schoolsto
change n, so the relationship between In(C) and In(u) will not be linear with a coefficient equa to one. Inthe
first identification method , | treat changes in n as nuisances that happen to cause non-linearities in the
relationship between In(C) and In(u), and | rely on the exogeneity of In(u) for identification. (The second
identification method relies solely on the discontinuitiesin the relationship between class size and enrolIment
that are generated by changesinn.)

Observe that we can write class size as:

(5) Cipg = = Ealif subtract

Mg n. +1.5 =1
) ijkt-1" Vijkt ijkt
where ny, . ; is the number of classesin the previous year, 129 js an indicator variable for adding a class, and

|ract js an indicator variable for subtracting a class. | do not assume that adding and subtracting occur
symmetrically because adjustment costs are not symmetric (particularly because the vast majority of teachers
have tenure).

Because | have panel data and actually observe each addition or subtraction of aclass, | can estimate

8
Mike-1

for each district, where the high-order polynomial specification isused to pick up nonlinearities.’ Inthe second

probit equations for adding a class and subtracting a class. For instance, | can estimate:

2
E. E.
6Ok+6lkn e +621{ n e ) .+ Oy

ijkt-1 ijkt-1

(6) Prob(1¢"=1) = Prob(ny =n ,+1) = ®

identification method, | estimate probit equationsand plug in enroliment. But, inthefirst identification method,
where only the variation in enrollment that is plausibly natural population variation is used, | would not plug

in actual enrollment but estimates of enrollment based on u. The results of this exercise would then be used
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as instruments for class size, in addition to u. Calculating correct standard errors under this elaborate
procedure would be extremely difficult, so the practical thing to do in the first identification method is not to
estimate equationsfor 1294 and 13°" gt all, but to skip thisintermediate step and instrument for classsizewith
not just In(u) but functions of In(u) aswell.** | use powers of In(u) up to the 8" power (these instruments have
ample explanatory power), but other functions of In(u) could be used too. Most of the explanatory power in
the first stage regression comes from the linear relationship between class size and In(u) that exists when the
number of classes does not change.

In short, my first identification method estimates equation (1), which relates achievement to classsize,
by instrumenting for class size with an estimate of In(u)and powers of the estimate of In(u).™

2. The Second Identification Method

The second identification method makes use of thefact that changesin the number of classesin agrade
can produce abrupt changesin classsize. The smplest way to take advantage of these discontinuities is the
cross-section method of exploiting maximum class size thresholds. Angrist and Lavy [1997] illustrate this
method using Israeli schools, which are supposed to have a maximum class size of 40. In America, districts
have maximum class sizes that are much lower. For instance, if a school had a maximum class size threshold
of 24, it would put studentsinto one class until enrollment is 24, put studentsinto two classes until enrollment
is 48, and so on. Itsrule could be written:

(7) C,=—— __ where C™=24 and int(2)=greatest integer < z

and its relationship between class size and enrollment would beillustrated by Figurel. Notice that classsize
varies abruptly and predictably when enrollment is at a multiple of 24. These discontinuities provide
identification because the difference in the underlying population that produces enrollment of 24 versus 25 is
very small (and should have acorrespondingly small effect on achievement), but the differencein classsizefor

enrollment of 24 versus 25 islarge (and should have asignificant effect on achievement if reductionsin class



10
sizeare efficacious). Thus, the change in the predicted class size between enrollment of 24 and enrollment of
25 based solely on the rule given by equation (7) is a good instrument for the actual differencein class sizes
between schools with enrollment of 24 and 25. The sameistrue for 48 and 49, 72 and 73, and so on.

There are three essential things to understand about this method of identification. First, the
identification is independent of the identification that comes from using In(u) as an instrument for class size,
so the two methods can be used as checks on one another.

Second, between the discontinuities, predicted class size varies with actual enrollment, which is, of
course, afunction of X and €. Therefore, predicted class sizeis not a vaid instrument except when the rule
triggers a change in the number of classes. Put another way, the estimates will be consistent only if
identification relies solely on the discontinuitiesin equation (7). All variation in predicted class size that is not
generated by arule-triggered change in the number of classes must be discarded if biasisto be eliminated. In
cross-section data, one does not observe actual changes in the number of classes, so the only useful variation
is the variation inside in the narrow ranges enclosed by the dotted line in Figure I--that is, the difference in
achievement for enrollment of 24 and 25, for enrollment of 48 and 49, et cetera. In cross section data, al of
the other variation in enrollment is suspect because it is between-district variation that not only reflects
differences in the underlying populations (X and €), but is plausibly endogenous to realizations of classsize.
(Some schools routinely have larger class sizes than others because of the way the rule functions, and parents
endogenoudy choose schools taking realized class size into account.) Discarding all suspect observations,
however, places great demands on cross-section data, since the results will depend on there being sufficient
occurrences of enrollment in very narrow ranges. Angrist and Lavy do only some of the proper discarding
because their cross-section data contain too few occurrences of enrollment in the right ranges. As a
consequence, they sacrifice consistency for power. Below, | present cross-section method that demonstrate
what happens when proper discarding isnot done. Since my dataare actually panel data, | am able to employ

awithin-district method (described below) that is both more powerful and less subject to bias than the cross-
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section method.

Third, identification arises only when the rule binds, so if one uses a rule that binds only in some
schools, one learns about the effects of class size only for those schools. For instance, some American states
have maximum class size rules that do not bind in districts where households have above-average incomes.
Similarly, in Angrist and Lavy's data, the maximum class size rule does not bind in districts that serve well-of f
households. Thereisnothing wrong with estimating the effect of class size only for less-well-off students, but
onemust be careful to interpret the results correctly. Also, if better-off districts actually have maximum class
size rules of their own that they follow, then using a state-wide or country-wide rule that does not bind
everywhere is throwing away good variation. Since there is typically not much good variation to exploit in
discontinuity-based identification strategies, throwing it away is undesirable.

The within-district method, which produces results that are both more representative and more
powerful, starts with consistent estimation of each district's rules for adding and subtracting a class. | have
data on multiple grades in multiple schools in multiple years in each district. Thus, | estimate two probit
equations for each district, where the dependent variables are 12 and 177> and the specification isthat given
by equation (6).** Since | actualy observe each time a class is added to a grade in a school, | can let the
probability of adding or subtracting a class be state-dependent. That is, equation (6) allows for the fact that
a school with 51 students in a grade is more likely to divide them into 3 classes if it used 3 teachers in that
grade in the previous year than if than if used only 2 teachers.™®

Armed with estimates of each district'sadd-a-class and subtract-a-classrules, | declarethe add-a-class
threshold to be the class size at which the probability of adding a class exceeds 50 percent and the subtract-a-
class threshold to be the class size at which the probability of subtracting a class exceeds 50 percent. If, by
chance, thewrong thresholds are selected for adistrict, the only result isthat useful variation isthrown away.*
Using the wrong thresholdsis like using a rule that does not bind for a district.

In the data, the estimated add-a-class thresholds range from 22 to 40, with most thresholds falling
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between 24 and 28. The estimated subtract-a-classthresholdsrangefrom 8 to 18, but thevast maority of these
thresholds are in the small range between 14 and 17.

| use the thresholds and actual enrollment data to calculate the difference between what class size

would be if the number of classes did not change and what class size would be if the predicted changesin the

number of classes occurred: i B
fadd  subtract n.
) Micer e i ijkt-1
~add . Eijk[ max . ~subtract . Eijk[ min .
where I, =1 if ——>C™ 0 otherwise lje =1 if ——<C™" 0 otherwise .

n n

ijkt-1 ijkt-1

(8) isthe part of the changein classsizethat isdue solely to thetriggering of an add-a-class or subtract-a-class
rule> | discard observations for which (8) is zero, and use the remaining observations to instrument for the
change in class size between this year and the previous year. That is, | estimate equation (1) in first-
differences: the change in achievement is regressed on the change in class size, instrumented by the changein

predicted class size that arises solely because arule istriggered.’®

V. Data

The empirical strategy creates anumber of datarequirements. First, since school cohorts are defined
by birth date, the data must contain information on birth by calendar year or population-by-age on the legal
cut-off (which is January 1 in the state of Connecticut).!” Second, the data must contain districts that are not
large because, in large districts, natural population variation averages out to agreat extent within each cohort.
Third, because the integer nature of teachers and classroomsis useful for making natural population variation
trandate into variation in class size and composition, data on the elementary grades is needed. Elementary
classesaremuch lessdivisible than secondary school classesbecausethe standard method of € ementary school
instruction is one teacher spending the majority of each school-day with a regular group of studentsin one
classroom. Also, class size is well-defined in elementary schools, but poorly defined in middle and high

schools, where students may experience different class sizesin different subjects. The resulting emphasis on
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elementary class size fits the empirical and pedagogical debates, which are focused on class size in early
grades.

Connecticut school data are particularly appropriate for the empirical strategy. The state has 163
elementary school digtricts, many of which aresmall. Half havetypical cohort sizes smaller than 150 students.

Districts are towns in Connecticut, so that vital statistics provide births by district of residence, by race of the
baby.'® Also, Connecticut collects an annual Enumeration of Children: population-by-age data as of January
1 for al school-aged children, by town. These data are unusual: most states rely on the decennia census.
Finaly, every year since 1979, Connecticut has administered state-wide achievement tests in mathematics,
language arts, reading, and writing. Between 1979 and 1985, the tests were administered only in the ninth
grade. Ninth grade scores are not very suitable for examining the effects of elementary class size and
composition, so | makelittle use of these scores beyond checking that they confirm other results. 1n 1986, tests
began to be administered in the fourth, sixth, and eighth grades. | mainly use these eleven years of test data
to measure achievement.”® In all these years, class size in Connecticut averaged 20 students with a standard
deviation of 3.6 students, but classes are observed that are as large as 40 students and as small as 8.%° While
Connecticut isnot uniquein having appropriate data, few other states have similarly propitious conditionsand
long panels of the relevant data.

Table | shows the structure of the Connecticut data by cohort. Each cohort is described by itslikely
graduating class--for instance, children who enter 6™ grade in the fall of 1991 are in the graduating class of
1998. All the data are available by district by grade. Enrollment (by race and gender) and class Size dataare
available by school by grade. | have 11 years of achievement data for each grade, so each achievement
equation contains 1793 observations (163 districts times 11 years of panel dataon asingle grade). | have 23
yearsof enrollment datafor each grade, however, so | estimate the enrollment residuals based on al 23 years
of data. The larger number of years allows me to get more precise estimates of u.*

It is worth considering what the correct unit of analysis would be if al the data were available by
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school. If school attendance area boundaries wererigid (not in the control of the district or only changed with
great difficulty) and if transfers between schools within districts were never alowed, then the district would
be unable to control natural population variation at the school level and the school would be the best unit of
analysis. That is, school-level analysis would be most powerful, though aggregating the data to the district
level and proceeding with district-level analysiswould produce unbiased results. Didtrict-level analysisisbest
if the district can exercise some control over natural population variation at the school level. For instance,
suppose a digtrict finds that one of its schoolsis facing an unusually large kindergarten cohort. The district
might reduce the cohort's size by revising its school attendance areas or by offering a popular program, such
as full-day kindergarten, at another school to induce voluntary transfers. Didtrict-level analysis would be
unbiased in this case, but school-level analysis might be biased.

In practice, the achievement equations must be run at the district level since confidentiaity
considerations prevent the release of school-level test scores. One can, however, estimate the enrollment
residuals (using equations 4 and 5) and the first-stage equations at the school level. For thefirst identification
method, | found that school-level estimation generated an increasein power over district-level estimation that
was too small to justify the possibility of bias that school-level estimation introduced. For the second
identification method, the add-a-class and subtract-a-class probit equations should be estimated at the school
level because they are attempting to identify a district's rules. That is, they are not attempting to exploit
variation beyond a district's control, but to understand how a district controlsitself.

The tests are administered at the beginning of each school year (September). Thus, the 4™ grade tests
may be affected by class sizes in the 1 through 3" grades, but they are unlikely to be affected by 4™ grade
classsize. Similarly, classsizesin 1% through 5" grades are relevant for the 6™ grade tests, and class sizesin
1% through 6™ grades are relevant for the 8" grade tests. | have attempted to test these statements of timing
relevance in the data, and they are generally confirmed--although the tests are weak because most cohorts

experience similar class sizes in the 1% through 6" grades. Unusually large cohorts, for instance, tend to



15
consistently experience large classsizes. In other words, although | match teststo the relevant class sizes, the
timing of the matches is not actualy crucial to the results.

A class is defined as a group of students who spend the magjority of the school day under the
supervision of one teacher. The measure of class size excludes pull-out instruction by specia education
teachers or aides. No teachers aides for regular instruction were observed in the districts that provide the
useful variation--that is, outside of thelargest districtsinthestate. Similarly, mixed-grade classesweresorare
in the districts that provide useful variation that | could not estimate an equation that predicted when they
would beintroduced.?® Instead, | include an indicator for mixed-grade classes.

All the data used are from publicly available sources.

V. Somelllustrative Graphs

Graphsfor individual school districtscan provideintuition about theempirical strategy and theresuilts.
| consider three school districts in Connecticut, chosen for their illustrative value (rather than their
representativeness): an extremely small district, avery small district, and one of the 10 largest districtsin the
state. Each of Figures llathrough Ilc shows adistrict's enrollment and class size in the 4™ grade, by cohort.
| selected the fourth grade because test scores arefirst available in that grade, but it would not have mattered
much if | had selected another grade. Figure Il1a shows that, in the extremely small district, enrollment and
class size are identically equal for every cohort. The district has only one classroom per grade. In the small
school district (Figure I1b), class size varies very closely with cohort size except for the graduating class of
2001. In this cohort, enrollment was 57 students and, instead of dividing the grade into two classes as was
usual, the school put the cohort into three classes of 19 students. This figure thus illustrates the abrupt
differencein class size that can occur when a change in the number of classesistriggered in a small school.

In both the small digtricts, class size varies over a large range: the smallest class observed contained 11

students, the largest 31 students. This range covers the policy range very fully--in fact, more fully than
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commonly used longitudinal surveyslike High School and Beyond or experimentslike Project Star. Inthelarge
district (Figurellc), thereisrelatively littlevariation in class size becauseitslarge enrollment smoothsvariation
and its large number of classrooms and teachers makes flexible management easy.

To measure classroom racial and gender composition, | use exposure or the average weighted
percentage of classes that are black or female in a grade-district. In Figures Illa through Illc, | show the
average weighted percentage black in 4™ grade for each cohort for the same three school districts. FiguresiVa
through IV c show similar series for the average weighted percentage female. The purpose of Figures llla
through 1Vc is to demonstrate how much more variation in exposure exists in small districts than in large
districts. In the extremely small district, the black percentage varies between 0 and 17 percent--without
showing any trend. In the same district, the female percentage varies between 33 percent and 58 percent. In
contrast, in the large digtrict, the black percentage varies only between 21 percent and 26 percent and the
female percentage varies only between 46 percent and 51 percent.

Figures Vathrough Vb show math scores for the same three districts, with class size graphed also.
If reducing class size improved math scores, then we would expect to see the two lines generally move in
oppositedirections, like amirror images of one another. But, itisdifficult to discern any pattern linking math
scoresand classsize. The same can be said for FiguresVlathrough Ve, which show reading scores and class
size, and for Figures VVllathrough VIlc, which show writing scores. However, looking at these three districts
ishardly asystematic way of determining whether there isa significant relationship between achievement and

classsize. Thereisaneed for regression anaysis.

V. Class Size Reaults

In this section, | examine the effects of class size on achievement. For comparison, | show resultsfor
not only the appropriate estimation method, but also less appropriate (though common) methods.

Table Il introduces the class size results by showing what happens as we move from less to more
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appropriate estimation methods. The dependent variablesareformed by dividing each test score by the overall
standard deviation of scoreson that test in Connecticut. Thus, the estimates in the table show how test scores,
measured in standard deviations, change when class size changes by one student. Dividing by the standard
deviation puts all the test scoresinto aconvenient and easily interpreted metric, especialy since the raw scores
are not intuitive, especially for reading and writing. 1t may useful, however, to know that a standard deviation
on the math test corresponds to mastering 2 or 3 more objectives out of atotal of 40.

In addition, | estimate val ue-added specifications using the differences between 6™ and 4™ grade scores
and between 8" and 6™ grade scores for a given cohort in agiven district.? These specifications alow meto
determine whether class size affects not only the level but the rate of growth of student achievement.

Each cell in Table Il shows the estimated coefficient on class size from a separate regression. The
specification of each regression is described by the column and row headings. For instance, the number inthe
upper-left-hand cell is the effect of average class size in grades 1 through 3 on 4™ grade math scores using a
specification that pool s observations across districts and cohorts (with cohort fixed effects). This specification
isanaive one likely to produce estimates biased by correlation between class size and unobserved parent and
community attributes. In fact, the estimates are al negative and highly statistically significant. 1f wewereto
give them credence, we would interpret them as indicating that a one student reduction in class size improves
test scores by about 1/10™ of a standard deviation.

In column 11, | add demographic variables such as median household income, the percentage of the
population in poverty, the percentage of adultswho are college graduates, and the percentages of the population
who are black and Hispanic. Alsoincludedisanindicator for the existence of atwo-gradeclass. Thesesimple
controlsfor observed parents and community characteristics greatly attenuate the estimated effect of classsize
on test scores, but the results are still mostly negative in sign. Five of the fifteen estimates are statistically
significant at the 5 percent level; dl five are negative. In fact, the results shown in column Il represent a

familiar pattern of results for between-school comparisons that control for simple demographics.
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Column 111 includes digtrict fixed effects, which control for any district characteristics--observed or
unobserved--that are constant over time. We cannot sign the bias we expect in such aregression, since much
of theidentifying variation in class size now comes from within-district decisionsto reduce class size over time
or reduce class size for certain students. In fact, the statistically significant estimates are mixed in sign.
Thefinal column of Tablell includesnot only district fixed effects but also district-specific linear time
trends. These results are somewhat credible since alot of the non-random variation in class size is partialed
out by linear time trends. However, the statistically significant estimates are still mixed in sign. Notice that
the within-district specifications (columns 11 and IV) generate very small standard errors. achange as small
as1/100™ of astandard deviation would generally be statistically significant at the 5 percent level. Thesesmall
standard errors are indicative of the fact that, after the addition of district fixed effects and district-specific
linear time trends, alarge amount (about 75 percent) of the variation in class size remains.

1. Results from the First Identification Method

Table 111 shows the explanatory power of the instruments in the implied first-stage equations. Each
cell represents a separate regression, and each contains the partial F-statistic on the joint significance of the
excluded instruments (In(u) and powers of In(u)). Each column heading describes the method of estimating
In(u) being used. For instance, column IV uses powers of the residual of enrollment from district-specific
regressions that contain an intercept and a quartic in time.

The F-statistics indicate that the excluded instruments are powerful predictors of classsize. The F-
statisticsin columns| through 1V, which use enrollment residuas, are amost uniformly greater than 10. There
is no clear difference in explanatory power between residuals from a cubic and residuals from a quartic,
suggesting that higher order polynomials would not explain more of the smooth changes in enrollment than a
quartic does. The quartic is, therefore, my preferred specification.

ColumnV containssimilar estimatesfor residua sfrom births-in-grade. Asweexpectd, theseresiduals

are powerful instruments, especially for later grades. By 6™ grade, residential mobility provides ample room
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for spillage between births and enroliment. Nevertheless, births-in-grade residuals are sufficiently powerful
to generate a specification test for results based on enrollment-in-grade residuals.

Table 1V contains the main class size results for the first identification method. Again, each cell
contains an estimate from a separate regression. Columns | through IV use different enrollment-in-grade
residuals as the instrument for classsize. Column V uses births-in-grade residuals.

Before considering the estimated coefficients, note the standard errors. The standard errorsare larger
with instrumental variablesthan they werewith ordinary least squaresin Tablell. Nevertheless, they are small
enough that changesin test scores as small as 2/100™ to 4/100"™ of a standard deviation would generally be
dtatistically significant at the 5 percent level in columns | through 1V. In other words, if reducing class size
by 1 made students master 0.1 more objectives (out of 40) on the math test, the improvement would be
dtatistically significant. The random variation in class size has considerable power to identify achievement
gains.

Despite this propitious situation, the estimates in columns | through 1V contain no evidence of
achievement gains linked to smaller class sizes. The estimates are mixed in sign, and none is statistically
significant at the 5 percent level. (The few estimates that would be marginally significant at the 10 percent
level havethe"wrong" sign). Infact, given the standard errors, the effects are rather precisely estimated to be
closeto zero.

Column V presents estimates that use residuals from births-in-grade. The standard errors are
considerably higher (although changes as small as 1/10™ of a standard deviation would be statitically
significant at the 5 percent level for most test scores). The point estimates do not, however, suggest adifferent
pattern than those in columns | through 1V. This suggests that few parents endogenously change their
enrollment decisions by, say, sending their child to private school when they observetheir childin an unusually
large cohort.

Giventhat Table IV presents"well-estimated zeros," it istempting to estimate avariety of alternative
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specificationsto seeif and when class size matters. | can show only afraction of the specifications| estimated.
Table V contains those most likely to be of interest.** Column | uses class size in the most recent grade as the
measure of class size (whereas Table 1V used average class size experienced in the relevant interval). The
results may differ little from those Table IV because a cohort tends to experience the same class sizesin 1%
through 6™ grade as a result of natural population variation. In fact, we find little difference in the results.
Columns Il through 1V use class size in the early grades, in order to test the hypothesis that class size
reductions are more efficacious in early grades. This hypothesisis prompted partly by Project Star results,
which suggest that achievement gainsareaone-time (level, not rate-of-gain) responseto one early year of small
classsize. Theresultsin Columns |l through IV are not, however, distinguishable from the main resultsin
Table V.

Column V showstheresults of estimating asplinein classsizeat 23. The splineisone of severa tests
of decreasing marginal returns to class size reductionsthat | estimated. The threshold at 23 is motivated by
Ferguson [1997], who arguesthat reductionsin class size have no effect below 23 students, but that reductions
above this threshold matter.> Each cell shows the coefficient on class size when it is greater than 23. The
results shown arerather precisely estimated zeros. reductionsin class size do not appear to be more efficacious
above 23.

The next column aso looksfor decreasing marginal returns. The independent variableisan indicator
for the cohort's having experienced class size of 30 or greater in at |east two out of the three most recent grades.
The coefficients and standard errors are, of course, different because the independent variable is constructed
differently, but the general pattern of results does not differ substantively from that of the main results.

Finally, column VII uses an indicator for the cohort's having experienced class size of 15 or fewer in
at least two of the three most recent grades. This specification is motivated by the idea that some types of
instruction might be practical only in very small classes. None of the estimated coefficients is, however,

dtatistically significantly different from zero at the 10 percent level.
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Of course, it is not possible to test the efficacy of reducing class size in ranges that are not observed
in the data reasonably often. It would be a mistake to extrapol ate these results to schoolsin which class size
is typically higher than 30. Since most schools in countries that are not highly industrialized fall into this
category, the results cannot confirm or contradict most devel oping country studies. It would aso beamistake
to extrapolate these results to class sizes of lessthan 15. 1n any case, such tiny classes are too expensive for
most American districts to consider because the cost of a one student reduction accel erates as class size gets
smaller (cost is linear in the percentage reduction, not the student reduction). A five student reduction from
abase of 40 raises costs by only 14.3 percent; but a five student reduction from a base of 15 raises costs by
50 percent.

Reductionsin class size may be more efficacious in schools where children come from disadvantaged
families. The estimates presented in Table VI attempt to test this hypothesis. The class size variable is
interacted with a set of indicator variables for (i) household income in the district (left-hand panel), (ii) the
poverty ratein thedistrict (middle pandl), and (iii) the percentage of the population in the district who are black
(right-hand panel). Both rural and urban districts in Connecticut have concentrations of low income
households, but poverty and, even more, black households are concentrated in urban districts. A value for
income, poverty, or percent black at or below the 25™ percentile puts a district in the "low" category. A value
at or above the 75™ percentile puts a district in the "high" category, and the remaining districts are in the
"medium” category. The standard errors are dlightly higher than in the main results because the sample
identifying each coefficient issmaller. Fortunately, for the disadvantaged groups, effects as small as 4/100™s
of astandard deviation would always be statistically significant at the 5 percent level for the 4™ and 6™ grade
tests and the value-added specifications.

Nevertheless, none of the estimates is statistically significantly different from zero. Even the pattern
of point estimates provides no confirmation of the hypothesis that class size reductions are more efficacious

in districts that contain disadvantaged students.
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2. Reaults from the Second Identification Method

Table VII shows results identified by the discontinuities that arise when the number of classes is
changed. Aswith the first identification method, | attempt to show how the estimates change as the method
applied becomes more appropriate. In columns| through 1V of Table VII, | treat the data as though it were
cross-section data, estimate the predicted class size function for each district based on its maximum class size
and equation (7), and use the predicted function as an instrument for classsize. Incolumn I, | usethe entirety
of the function. Column Il uses observations within 8 students of a discontinuity, and column Ill uses
observations within 4 students of a discontinuity. Column IV uses only the discontinuities and is, of course,
the desired specification that should produce consistent estimates. The estimates in columns | though 111 are
likely to be biased, with the degree of bias being highest in column I.

The notesto Table VI contain information on the number of effective observationsin each regression
and the power of each first-stage equation. As one narrows in on the discontinuities, the number of usable
observations falls from 1793 in column | to about 115 in column 1V (the exact number depends on the grade).
Thereisample explanatory power in the first-stage regressionsfor column I, but the explanatory power isjust
adequate in thefirst-stage regressions for column 1V: the t-statistics on predicted class size range between 2.0
and 2.7. These numbers demonstrate the extraordinary demands that the cross-section method puts on data
whenitisapplied appropriately. Thewithin-district method allowsusto exploit moretruediscontinuities. The
number of usable observationsin column V is about 650 (the exact number depends on the grade).?®

If we were to naively interpret the cross-section results in column I, we would conclude that a one
student reduction in class size raises math and reading achievement by about 1/10" of a standard deviation.
These results are roughly in line with those in column | of Table 11, which shows the results of naive OLS
regression. Aswe narrow in onthediscontinuities (still using the cross-section method), statistical significance
falls. But, even in column Il (which uses observations within 4 students of a discontinuity), five of the

estimates are datisticaly significant at the 5 percent level.  In column 1V, however, where only the
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discontinuities are used, none of the resultsis close to being statistically significant and the point estimates do
not exhibit apattern evenintheir signs. Therefore, the satistically significant resultsin the other cross-section
results rely not on the discontinuities in the predicted class size function, but on the suspect parts of the
function. Columns | through 1V should make us skeptical of cross-section results that do not rely solely on
discontinuities.

Column V shows results from the within-district method, in which a district's change in scores is
regressed on its changein class size, instrumented by part of the changein predicted classsizethat isdue solely
to a maximum or minimum threshold being triggered. See equation (8). Like the column IV estimates, the
column V estimates are consistently estimated.  Unlike the column 1V estimates, however, the column V
estimates have standard errors that would allow a change in test scores of 3/100"s to 5/100™s of a standard
deviation to be gtatistically significant at the 5 percent level. None of the coefficient estimates in column V
is, however, dtatistically significant. The estimatesare closeto zero and mixedin sign, much like the estimates

that depend on the first identification method.

3. Interpretation

Results from both identification methods indicate that class size reductions in the policy range have
little or no effect on achievement. The estimates are preci se enough so that improvementsthat are educationally
significant would be identifiable. The two identification methods are checks on one another, and the results
are robust to numerous specification changes.

How might weinterpret theseresults, especialy in light of the Project Star results, which show effects
of classsizereductionsthat are small but statistically significant (and would be statistically significant if they
appeared inthispaper, given thispaper'sstandard errors)? In both the natural and policy experiments, teachers
had more opportunity to improve achievement with smaller classes The difference between the two types of

experiments may be that the natural experiment varied opportunities but did not vary incentives, while the
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policy experiment combined greater opportunities with evaluation and incentives for teachers and
administrators to use the opportunities. If thisisthe correct interpretation of the differencein the results, then
theimplicationisthat policieslike California's should contain built-in evaluation and incentives. Therearealso
less positive interpretations of the difference between the natural and policy experiment results. It may be that
the policy experiment works differently because of Hawthorne effects (especially since Project Star witnessed
a one-time improvement in achievement, not a permanently higher growth rate of achievement). Or, it may be
that school staff undid some of the random design of the policy experiment. Since Connecticut school staff
were certainly unaware of the natural experiment, we do not have to be concerned about their responding to
the evaluation.

We might attribute some of the difference in results to the necessarily transitory nature of natural
population variation. The variation is transitory from the teacher's point of view, not from the student's or
parents point of view (since elementary class sizeis persistent for a cohort in adistrict). Teachers may beill-
prepared to take advantage of smaller class sizes in a systematic way--in other words, they may not vary their
primary classroom style much when they have the opportunities presented by a smaller class. This
interpretation would suggest that reductionsin class size should be combined with instruction for teachers that
helpsthem modify their teaching techniques. Thiscannot, however, bethe entire explanation. Evenif he does
not lecture differently to asmaller class, ateacher can devote more effort to each student during every teaching
activity that has an individual element. Many of these activities are part of any teacher's basic repertoire:
answering questions, correcting assignments, tutoring after school, talking to parents, and so on. Also, the
Project Star results were achieved after only one year of smaller class size, and the teachers involved did not

receive special instruction.

V1. The Effects of Racial Composition

Racial composition fits easily into the framework set up for class size. In particular, racial
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composition is likely to be correlated with unobserved student, parent, and community characteristics,
generating the potential for bias. Thus, we can substitute percent-black-in-enrollment and percent-black-in-
birthsin equations (3) and (4) and proceed to estimate residuals as outlined above.

Although the same empirical strategy works for racial composition, the question we want to answer
is different than the class size question. Class sizeislargely a policy choice, and the policy range is clearly
defined and similar across the United States. When racial composition is a policy choice, as under a
desegregation plan, the policy range is different for every district. Desegregation plans generally attempt to
equalize exposure over al classesin adistrict, but equal exposureis 15 percent exposure in some districts and
80 percent in others. Moreover, desegregation orders are responsible for only asmall amount of school racia
composition. Most racial composition is the result of families choices about where to live (which may be
affected by how other familiesor local schoolstresat their children). Inshort, racial compositionisnot generaly
apolicy choice.?’

The problem afamily or school usually faces is not how to deal with a desegregation order, but how
to deal with thefact that ablack student hasenrolled. In particular, families and schools might engagein faulty
statistical discrimination: attributing traits they associate with blacks to the student and reacting by leaving
the local schools, discouraging the black student, or causing contention in the classroom. | say "faulty"
statistical discrimination since the fact that the student has enrolled indicates that he is likely to have
unobserved traits that differ from black students who have not enrolled.  Thus, the question is, what should
families and school s expect of a black student when they observe him enroll? Should they expect him to have
lower achievement than a non-black student who enrolls? Should they expect his presence to lower the
achievement of non-black students?

The estimates | present help to answer these questions because natural population variation makes
exposure vary randomly within a given steady state. In other words, natural population variations helps us

isolate the effects of black students on average achievement that areintrinsic to their presence from effectsthat
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caused by other factors correlated with their presence. Examples of intrinsic effects would be blacks aways
having low innate ability or always causing other students' achievement to suffer.

Table VIII shows what happens as we move from less appropriate estimation methods to more
appropriate ones. Each cdll in the table shows the estimated coefficient on percent-black-in-class from a
separate regression.  The specification in column | smply pools observations across districts and cohorts
(with cohort fixed effects). Thisnaive specificationislikely to produce estimates biased by correlation between
percent black and unobserved parent and community attributes. In fact, all the estimates in column | are
negative and highly statistically significant (seven of the t-statistics exceed 40). If we wereto give the results
acausal interpretation, wewould say that raising the percent black by 10 percentage pointsworsenstest scores
by 1/2th of a standard deviation. (A 10 percentage point change in percent black typically trandates into a
change in the race of two students. Thisis a change that is big enough to be interesting.) We should not,
however, interpret these results causally because 55 percent of blacks in Connecticut live in the five largest
school districts. Theresultsin column | reflect the characteristics of these five cities.

In column 1, | add the demographic variables and the indicator for mixed-grade classes. These
controlsfor observed characteristics do not notably ater the pattern of results. The point estimatesare smilar
and, although the standard errors triple or quadruple, all the estimates are still statistically significant.

Column I11 includes district fixed effects, so that the identifying variation comes from within-district
changes in percent black over time. Although we cannot confidently sign the bias, we might still expect it to
be negative. In fact, the four estimates that are statistically significant at the 5 percent level are all negative.
Similar statements coul d be made about the resultsin column 1V, which includes both district fixed effects and
district-specific linear time trends.

In column V, percent-black-in-class is instrumented with the residua of percent-black-in-enrollment
from district-specific regressions that contain an intercept and a quartic time trend. The standard errors are

very small: a change of 2/1000™ of a standard deviation in test scores for a 10 percentage point changein
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percent black would generally be dtatisticaly significant at the 5 percent level. Nevertheless, none of the
estimatesis Satistically significantly different from zero. These results are confirmed by the results shown in
column V1, where percent-black-in-classis instrumented by residuals from percent-black-in-births-in-grade.
The estimates based on birth residuals naturally have higher standard errors, but the point estimates exhibit
apattern that is roughly similar to that of column V.

We may conclude that there is no intrinsic achievement effect of having additiona black students
present. That is, they appear not to have different achievement on average than white students who enroll in
the same schools, and they appear not to affect the achievement of other students. The entire effect of greater
exposure to blacks that we get in naive estimates appears to be due to characteristics correlated with higher
steady state percentages of blacks.

The results should not be interpreted as saying that desegregation plans would have no effect on
schools. Students who were involuntarily moved by these plans would, on average, be associated with the
characteristics that cause the poor student achievement in estimateslike thosein column 1. Instead, the results
can be interpreted as saying that parents who observe that their child happens to be in a cohort with an

unusually high percentage of blacks should not expect their child's achievement to be affected.

V1. The Effects of Gender Composition
The natural population variation strategy can also identify the effects of gender composition. We do
not expect gender composition to be strongly correlated with unobserved student, parent, and community
characteristics, but parents do treat boys and girls differently and private schooling opportunities differ
systematically by gender. For instance, public schools with high percentages of females may be located in
communities that support all-male private schools (and thus have the characteristics associated with such
communities). Alternatively, parents might be more likely to remove their child from a school where violence

or drugs are prevaent if that child isaboy. If so, public schools with high percentages of females might be
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poor environments. Using natura population variation is useful not because we think that the phenomenathat
cause schools gender composition to be correl ated with unobserved characteristics are prevaent, but because
there is so little systematic variation in schools gender composition that a significant share of it may be
generated by phenomenathat are relatively uncommon.

The most obvious policy related to gender composition is single-sex education, but thisisrarely used
in public education. Thetwo most relevant policies are (i) modification of teaching techniquesto take account
of the ways in which gender composition affects the classroom and (ii) partia isolation of students by gender
for learning certain subjects. These policies are based on the hypotheses that femal es get |ess attention when
they arein class with a higher percentage of males and that co-educational classes generate socia pressure for
females to neglect math and science. Alternatively, one might hypothesize that femalesin disproportionately
male classes are exposed to more math and science material and might, as a result, achieve higher math and
Science scores.

Vital statisticsin Connecticut are not compiled by gender by town, so it is not possible to instrument
for percent-female-in-class using percent-female-in-births-in-grade. Otherwise, the organization of Table 1X
isidentical to that of Table VIII. Column | contains simple regressions that pool across districts and cohorts
(with cohort fixed effects). If unobserved characteristics of schools, communities, or parents affect gender
composition, then the results in this column will exhibit bias. A few of the point estimates are statistically
significantly different from zero at the 5 percent level, and they are al negative. If we were to interpret the
results causally, wewould say that a 10 percentage point increasein percent femal e lowers mathematics scores
in the 4™ and 6™ grade by 1/3“ of a standard deviation.

As demographic variables, district fixed effects, and district-specific linear time trends are added to
the regression, statistically significant negative estimates disappear and are replaced by some statistically
significant positive estimates. Focus, however, on column V, which uses resduals of percent-female-in-

enrollment from district-specific regressions that contain an intercept and aquartic timetrend. 1n this column,
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whereidentification is based on natural population variation that is credibly random, percent female is shown
to have positive effects on writing in the 4™, 6™, and 8" grades and also in the value-added specifications. A
ten percentage point increase in percent femal e raises writing scores by between 1.5 and 2 tenths of a standard
deviation. Becausedidtrict-level scoresare not released by gender for confidentiality reasons, we cannot know
for certain whether females are just better at writing or whether classrooms with ahigh percentage of females
are more conducive to the learning of writing (a subject that requires an unusual degree of individualized
attention). However, aggregate statistics on mae and femal e scores suggest that the increase in writing scores
istoo high to be attributed to femal€'s just being better at writing. The average femal€'s writing score exceed
that of the average male by between one-half and two-thirds of a standard deviation in grades 4, 6, and 8
(depending on the grade and cohort). But, the results in column V suggest that the different between an all-
female and an all-male class would be between 1.5 and 2 standard deviations. In addition, a ten percentage
point increase in percent female raises 4" grade math scores by 1/10™ of a standard deviation. It is difficult
to attribute thisimprovement to femalesjust being better at math since the average femal e scores dightly below
the average male on the 4™ grade math test.

Insummary theresultsof TablelX suggest that gender composition affects how aclassroom functions.
Thefact that writing is more affected than reading or math may suggest that females particularly alter the way
in which teachers distribute their time among individual students. Moreover, Table IX demonstrates how the
natural population variation strategy can isolate causal effects from amorass of confounding variation if they

exist.

VI1l. Conclusions

This study demonstrates how to use natural population variation to identify variation in class size and
composition that can be used to consistently estimate the effects of class size and composition on student

achievement. | outline two separate methods for using natural population variation. The first method, based
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on isolating the credibly random component of the variation in population for a grade in a school, generates
empirically useful variation in class size and racial and gender composition. The second method is based on
exploiting the abrupt or discontinuous changes in class size that occur when natural population variation
triggers a change in the number of classesin agrade in a school. | find that this second method can only
produce results that are both consistent and precise when it is applied to within-district changesin class size
and population.

Using random fluctuationsin classsize generated by natural populationvariation, | find that reductions
in class size in the policy range of 15 to 30 students have no effect on student achievement. The estimates are
sufficiently precisethat, if a1 student reduction in class size improved achievement by just 3/100™ to 4/100™
of astandard deviation, | would havefound statistically significant effectsin math, reading, and writing. These
results are confirmed by within-district estimates that are identified solely by the discontinuities in class size
that occur when aclassis added to or subtracted from agrade. For the policy range of 15 to 30 students, | find
no evidence that class size reductions are more efficacious in early grades, in schools that contain high
concentrations of disadvantaged students, or in classes that are initially larger.

These results are far less likely to suffer from omitted variables bias and endogeneity bias than
estimates that depend on common sources of variation in inputs, such as the variation between districts. |
demonstrate that common methods produce results that display expected patterns of bias. | aso demonstrate
that discontinuity-based results that do not rely solely on the discontinuities generated by class size thresholds
are likely to be biased.

The natural population variation | employ has the advantage that participants are not aware of being
evaluated. In this way, the experiments mimic actual class size reduction policies, which rarely include
evaluations or incentives for schools to make good use of the opportunities provided by smaller class sizes.
The difference between this paper's results and the results of policy experiments like Tennessee's Project Star

are probably due to the fact that Project Star participants were aware of being evaluated and had incentives



31

to use the opportunities to improve achievement. This interpretation of the contrast between the results
suggests that policiesthat only provide more resources will be less efficacious than policies that tie resources
to performance. In other words, giving schools more opportunitiesto improve achievement may not be enough
to guarantee that achievement is actually improved.

| aso examine the effect of classroom racia composition and find that the presence of black students
in aclass, in and of itself, has no effect on achievement. This should not be interpreted as evidence that
desegregation plans, which move students to schools in which they would not otherwise not enroll, will have
no effect on achievement. 1t should be interpreted as evidence that a parent whose child happens to be a class
that hasan unusually high proportion of black studentsrelative to the district norm should not expect hischild's
achievement to be affected. | also demonstrate that estimates that rely on between-district comparisons (even
when they control for demographics) suffer from very substantial bias due to the correlation between racia
composition and unobserved student, parental, and community characteristics.

Finaly, I examine the effect of classroom gender composition and show that more female classes
perform significantly better in writing in the 4™ through 8" grades and in math in the 4™ grade. A comparison
between the improvement in writing and math performance and typical male-female differences on the tests

suggest that gender composition aters classroom conduct.
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1. Thereis, however, debate about how much reductions in class size improve opportunities--particularly
once class size is under 25 students.

2. National Center for Education Statistics, 1997. There are differences between the student-teacher ratio
and class size, but the differences are less of a concern for elementary schools than for secondary schools. 1n any
case, the differences are not relevant to the empirical work in this paper, because | use teachers who have regular
classroom instruction as their major duty.

3. Theliterature on racial and gender composition of classrooms, both popular and academic, is too
voluminous to survey. In just the past two years, hundreds of articles have been published by education journals
and newspapers on the effects of altering classroom racial and gender composition. Many school districts have
experimented with single-sex classes in math and science, and afew large city districts (Philadel phia, Baltimore,
and New Y ork) have created single-sex schools. Detroit, Milwaukee, and Minneapolis have created all-black
school.

4. Surveys of the evidence on class size include Hanushek [1996, 1986], Card and Krueger [1996], and
Betts[1995].

5. See Krueger [1997] for a description of the Project Star results.
6. However, it is generally not transitory from the point of view of a cohort of students.

7. See Salmon et al [1995] for evidence on the prevalence of compensatory policiesin state school
finance. More than 80 percent of federal money for elementary and secondary education is devoted to
compensatory policies: Title I, bilingual education, special education, and the free and reduced price lunch
program.

8. | also estimate such an equation for each district. Below, | discuss the advantages and disadvantages of
estimating the relationship between class size and enroliment at, alternatively, the school and district level.

9. A high-order polynomial is possible because each district has multiple grades, schools, and years.
Even the smallest districts contain 138 observations with which to estimate equation (6), and typical districts
contain between 414 and 690 observations. Alternatively, | could use other specifications, such as splines, to pick
up the nonlinearities.

10. Thisisan application of the general principle that the first-stage equation can be reduced-form,
especially when instrumental variables estimation depends on exclusion restrictions for identification.

11. Itisnot obvious whether equation (1) should have In(C) or C as the independent variable. In(C) isthe
better variable if achievement varies with percentage reduction in class size--a reduction from 20 to 18 students (a
10 percent reduction) is more valuable, say, than areduction from 30 to 28 students (a 6.7 percent reduction). On
the other hand, C may be the better variable if there are decreasing returnsto class size reductions. | estimated
results both for In(C) and C. Since there was no substantive difference in the results, | show the results for C,
which is the more familiar form of the independent variable.

12. | have also estimated the probits instrumenting for the independent variables with In(u). This method
ensures that the estimated probit parameters are not functions of e, but is probably an unnecessary precaution for
the cross-section discontinuity method and certainly an unnecessary precaution for the within-district discontinuity
method (because variation within adistrict around the fixed rules identifies the estimates). In any case, the
estimates that result are not substantively different from the results shown in section VI.
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13. Even acursory look at the data reveals the importance of state dependence. Its presenceis not
surprising, given that collective bargaining is nearly ubiquitous among Connecticut teachers. All Connecticut
union contracts contain tenure clauses, and the majority of contracts constrain how and when a district can move a
teacher between grades and schoolsin a district.

14. That is, the instrument (the change in predicted class size generated by arule being triggered) is
uncorrelated with the actual change in class size. The results are similar if the thresholds are selected based on a
dightly different probability, such as 60 percent.

15. That is, we can write the change between this year's class size and the previous year's class size as:

3 3{33]_{ i 3@3}_
nt,1+|tadd*|tmmad ntfl ntfl ntfl [nt,lﬂtadd*ltmbtrad ntfl ntfl ntfl

The term in the square brackets is the part of the change in class size that is due to a change in the number of
classes. (8) isthe square bracketed term with 1°® and 1% replaced by their predicted counterparts 12 and e,
which are generated by the class size thresholds. The term in the braces is the part of the change in class size that
islikely to reflect underlying changes in the population between year t and year t-1.

16. Thefirst-differenced version of equation (1) has an intercept because X includes indicator variables
for cohorts.

17. In Connecticut, a child is ordinarily enrolled in kindergarten if he will be 5 by January 1 of the school
year.

18. Some districts combine two small towns. In such cases, the towns vital statistics are aggregated.

19. Over this period, the tests have remained consistent to allow comparisons across years. | do not use
the language arts score because it is partly an aggregate of the reading and writing scores and does not appear to
provide much additional information.

20. Connecticut does not appear to have a state-wide maximum class size rule, although state aid for
certain programs is a function of class size.

21. Inaprevious version of this paper, | estimated the enrollment residuals using only those years for
which | also had achievement data. The results do not differ substantively.

22. Outside of the largest districts, there was no case of an aide being assigned to aregular class for
routine instruction and mixed-grade classes made up less than 4 percent of all classes. Special education students
sometimes have aides. Interestingly, nearly all of the instruction that did not fit the standard elementary school
model occurred in the 10 largest districts in Connecticut. Because these districts have little useful natural
population variation, they can be dropped from the analysis without significantly affecting the results.

23. These are not quite value-added specifications because the students in a cohort vary slightly between
grades as students move into and out of the district.

24. That is, Table 5 presents specifications that are frequently requested and interesting in substance.
Specifications that are only interesting as functional form tests are not shown, though several were estimated.
These include regressions that use the natural log of class size, regressions that are unweighted (that is, regressions
that ignore the fact that the test scores are district averages), regressions that use enrollment residuals based only
on the eleven years of data for which elementary test scores are available, and regressions that use 9" grade test
scores and population-by-grade data from the Enumeration of Children.
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25. 27 percent of the classes have more than 23 students, and large classes are particularly likely to be
caused by natural population variation. However, no district in Connecticut appearsto have atarget class size
above 23.

26. When considering the number of usable observations, it is helpful to keep in mind that the
achievement equations have to be estimated at the district level. In order to take full advantage of the school-level
data on class size, enrollment, and number of classes by grade, | used the following two-stage |east squares
procedure. The first-stage equations (the regression of actual class size on predicted class size based on the
threshold functions) were estimated at the school level, separately for each grade. The predictions from these
regressions were aggregated to the district level, and district-level achievement was regressed on these district-level
predictions in the second-stage. When the first-stage regressions are restricted to depend only on observations at or
around the discontinuities, the first-stage predictions are weighted so that the district-level discontinuity-based
change in predicted class size is correct. For instance, if adistrict contains two schools of equal size, and a
threshold is triggered in only one school, then the district's discontinuity-based predicted change in classsize is
equal to half the school's discontinuity-based predicted change in class size.

27. Secondary school administrators can create classroom segregation by inducing black students to self-
select into lower level classes. In elementary schools, classroom segregation can generally be achieved only by
forcing it upon students (since they are too young to choose for themselves). Such unsubtle techniques for creating
segregated elementary classes in a school are increasingly rare, though still occasionally documented. Thus, an
elementary school principal typically has little policy control over the racial composition of classesin his schools.
In Connecticut, classes within a grade within a school tend to have nearly identical racial and gender composition.
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OL S Estimates of the Effects of Class Size on Student Test Scores in Math, Reading, and Writing*

Each cell below dotted line contains the estimate from a separate regression. See next page for notes.

38

dependent
variabl€?

4" grd math
score

4" grd reading
score

4™ grd writing
score

6" grd math
score

6" grd reading
score

6" grd writing
score

8" grd math
score

8" grd reading
score

8" grd writing
score

diff betw 6™ & 4"
grd math scores

diff betw 6™ & 4"
grd reading scores

diff betw 6™ & 4"
grd writing scores

diff betw 8" & 6"
grd math scores

diff betw 8" & 6"
grd reading scores

diff betw 8" & 6"
grd writing scores

independent
variable

avg classsize up
to 4" grd

avg classsize up
to 4" grd

avg classsize up
to 4" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsizein
5" and 6" grds

avg classsizein
5" and 6" grds

avg classsizein
5" and 6" grds

avg classsizein
6" grd

avg classsizein
6" grd

avg classsizein
6" grd

cohort
fixed
effects

-0.168
(0.013)

-0.080
(0.018)

-0.077
(0.007)

-0.200
(0.014)

-0.185
(0.012)

-0.075
(0.006)

-0.166
(0.017)

-0.142
(0.014)

-0.079
(0.009)

-0.028
(0.003)

-0.044
(0.004)

-0.001
(0.002)

-0.001
(0.004)

-0.003
(0.004)

-0.008
(0.005)

cohort fixed
effects &

demographic
controls

-0.039
(0.007)

-0.002
(0.025)

-0.019
(0.005)

-0.001
(0.009)

-0.012
(0.007)

-0.001
(0.006)

-0.014
(0.009)

-0.017
(0.008)

-0.015
(0.008)

-0.007
(0.003)

-0.003
(0.003)

-0.002
(0.002)

-0.006
(0.004)

-0.003
(0.004)

-0.002
(0.005)

school district

cohort fixed
effects®

-0.065
(0.004)

0.002
(0.010)

-0.100
(0.005)

-0.015
(0.002)

-0.018
(0.001)

-0.073
(0.003)

-0.014
(0.002)

-0.018
(0.002)

-0.044
(0.003)

0.013
(0.002)

-0.003
(0.001)

-0.016
(0.002)

0.015
(0.004)

-0.007
(0.005)

0.003
(0.001)

v

school district fixed
fixed effects &  effects, district-specific

linear time trends,

cohort fixed effects

0.001
(0.004)

0.011
(0.014)

-0.012
(0.004)

0.001
(0.003)

-0.011
(0.003)

-0.050
(0.005)

0.019
(0.007)

0.021
(0.008)

0.017
(0.012)

-0.009
(0.002)

0.010
(0.001)

-0.022
(0.004)

0.015
(0.006)

-0.007
(0.007)

0.006
(0.002)




39

L All regressions are weighted by number of students over whom the dependent variable is averaged; include a fixed
effect for each cohort; and have 1793 observations. See Table 1 for the structure of the panel data. Standard errors
in parentheses.

2 The dependent variables are formed by dividing the average test score by the overall standard deviation of scoreson
that test in Connecticut. Thus, the coefficients show how test scores, measured in standard deviations, change when
class size changes by one student.

% The controls are: median household income, percentage of the population in poverty, percentage of adults who are
college graduates, percentage of the population who are black, percentage of the population who are Hispanic, and an
indicator for the class containing two grades. Only the indicator for two-grade classes remainsin the equation when
district fixed effects are included (columns 111 and 1V).
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Tablelll
Explanatory Power of Instruments: F-statistics on Joint Significance of Instruments in First-Stage Regressions'

Each cell below dotted line contains the estimate from a separate regression.

| 1 Il v \Y/
independent variables are residuals of...
enrollment-in-grade... births-in-grade...
from grade-district-specific regressions on an intercept & a...
linear quadratic cubic quartic quartic
time trend time trend time trend time trend time trend

1* grd class size 13.060 15.000 9.400 11.180 5.872
(0.000) (0.000) (0.000) (0.000) (0.000)

2" grd class size 13.748 12.082 12.768 10.080 4,292
(0.000) (0.000) (0.000) (0.000) (0.000)

3% grd class size 12.870 12.600 11.280 14.960 4171
(0.000) (0.000) (0.000) (0.000) (0.000)

4" grd class size 12.680 14.480 13.740 10.580 3.950
(0.000) (0.000) (0.000) (0.000) (0.000)

5" grd class size 13.260 12.480 11.340 15.720 3.762
(0.000) (0.000) (0.000) (0.000) (0.000)

6" grd class size 12.507 14.278 12.507 12.353 2.814
(0.000) (0.000) (0.000) (0.000) (0.000)

! There are 1793 observations in each regression. Probability>F in parentheses. Each first stage regression has, asits
dependent variable, class size in agrade. Each regression has, as its independent variables: the 1% through the 8"
powers of an estimate of In(u). These are the excluded instruments to which the title of the table refers. Each
regression also contains cohort fixed effects, district fixed effects, and district-specific linear time trends. Not
surprisingly (because of the residuals' construction), the inclusion of the fixed effects and time trends has a negligible
effect on the estimated effects of the excluded instrument. (The fixed effects and time trends are included simply to
facilitate comparison of estimates across specifications.) Similar but slightly larger F-statistics are obtained if the
dependent variableis the natural log of class size in grade.
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IV Estimates of the Effects of Class Size on Student Test Scores in Math, Reading, and Writing®

Each cell below dotted line contains the estimate from a separate regression. See next page for notes.
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dependent
variabl€?

4" grd math
score

4" grd reading
score

4™ grd writing
score

6" grd math
score

6" grd reading
score

6" grd writing
score

8" grd math
score

8" grd reading
score

8" grd writing
score

diff betw 6™ & 4"
grd math scores

diff betw 6™ & 4™
grd reading scores

diff betw 6™ & 4"
grd writing scores

diff betw 8" & 6"
grd math scores

diff betw 8" & 6"
grd reading scores

independent
variable

avg classsize up
to 4" grd

avg classsize up
to 4" grd

avg classsize up
to 4" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsize up
to 6" grd

avg classsizein
5" and 6" grds

avg classsizein
5" and 6" grds

avg classsizein
5" and 6" grds

avg classsizein
6" grd

avg classsizein
6" grd

v

\%

independent variable is instrumented with the residuals of...

enrollment-in-grade...

births-in-
grade...

from grade-district-specific regressions on an intercept & a...

linear
time trend

-0.014
(0.017)

-0.009
(0.006)

0.026
(0.014)

-0.004
(0.015)

-0.008
(0.016)

0.030
(0.018)

0.010
(0.008)

0.017
(0.014)

0.020
(0.018)

0.007
(0.017)

-0.018
(0.014)

0.015
(0.019)

0.016
(0.010)

-0.015
(0.011)

quadratic
time trend

-0.008
(0.017)

-0.008
(0.006)

0.026
(0.014)

0.002
(0.014)

-0.004
(0.016)

0.031
(0.017)

-0.011
(0.014)

-0.001
(0.010)

-0.012
(0.015)

0.013
(0.017)

-0.014
(0.014)

0.027
(0.020)

0.018
(0.010)

-0.013
(0.011)

cubic

time trend

-0.013
(0.016)

-0.006
(0.006)

0.023
(0.014)

0.010
(0.016)

-0.013
(0.017)

0.030
(0.020)

0.006
(0.009)

0.010
(0.008)

0.029
(0.017)

0.016
(0.018)

-0.011
(0.014)

0.030
(0.019)

0.020
(0.011)

-0.015
(0.011)

quartic

time trend

-0.010
(0.017)

-0.005
(0.006)

0.023
(0.014)

0.007
(0.016)

-0.011
(0.017)

0.015
(0.019)

0.001
(0.010)

0.015
(0.013)

-0.001
(0.013)

0.020
(0.018)

-0.004
(0.014)

0.021
(0.019)

0.012
(0.012)

-0.015
(0.012)

quartic
time trend

-0.021
(0.090)

0.019
(0.036)

-0.035
(0.073)

0.047
(0.076)

-0.007
(0.085)

0.005
(0.089)

0.002
(0.057)

-0.012
(0.078)

-0.012
(0.080)

-0.006
(0.036)

0.010
(0.047)

-0.011
(0.031)

-0.012
(0.031)

0.013
(0.027)
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diff betw 8" & 6™  avgclasssizein 0.019 0.013 0.010 0.008 0.001
grd writing scores 6" grd (0.019) (0.018) (0.019) (0.022) (0.059)

! Standard errors are in parentheses. All regressions are weighted by number of students over whom the dependent
variableisaveraged, and all regressions have 1793 observations. The specification isthe same ascolumn 1V of Table
2, except that class size in instrumented as described at the top of thetable. See Table 1 for the structure of the panel
data. See Table 3 for the explanatory power of the instruments.

2 The dependent variables are formed by dividing the average test score by the overall standard deviation of scoreson
that test in Connecticut. Thus, the coefficients show how test scores, measured in standard deviations, change when
class size changes by one student.
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TableV
IV Estimates of the Effects of Class Size, Generated by Some Alternative Specifications'

Each cell below dotted line contains the estimate from a separate regression. See next page for notes.
I I " v \Y, VI VI

independent variable, which isinstrumented by residuals of enrollment-in-grade from grade-
district-specific regressions on an intercept & a quartic time trend, is...

dependent classsize  avgclass avg class avg class classsize indicator indicator

variable? most sizein sizein sizein spline at for class for class

recent grd® grades1-3  grades 1-2 grade 1 23 size :30° size <15°
4™ grade -0.031 -0.010 0.011 -0.001 0.001 0.107 0.048
math score (0.0212) (0.017) (0.013) (0.024) (0.019) (0.125) (0.115)
4™ grade -0.013 -0.005 -0.007 -0.013 -0.011 0.063 -0.026
reading score (0.014) (0.006) (0.004) (0.023) (0.007) (0.058) (0.046)
4™ grade -0.030 0.023 0.011 0.018 0.030 0.132 -0.016
writing score (0.016) (0.014) (0.010) (0.019) (0.016) (0.107) (0.096)
6™ grade 0.001 0.017 0.008 0.031 0.004 -0.068 0.128
math score (0.014) (0.017) (0.013) (0.026) (0.017) (0.147) (0.094)
6™ grade -0.001 0.020 0.020 0.018 -0.016 -0.275 0.158
reading score (0.014) (0.019) (0.013) (0.029) (0.018) (0.151) (0.092)
6™ grade -0.020 0.030 0.021 0.019 0.016 0.026 0.141
writing score (0.013) (0.024) (0.015) (0.015) (0.0212) (0.152) (0.116)
8" grade 0.012 0.022 0.030 0.001 -0.011 0.135 0.244
math score (0.009) (0.026) (0.028) (0.014) (0.018) (0.151) (0.191)
8" grade -0.015 0.037 0.028 0.015 -0.008 -0.207 0.158
reading score (0.008) (0.026) (0.028) (0.012) (0.010) (0.139) (0.179)
8" grade 0.016 -0.016 -0.027 -0.006 -0.001 -0.171 0.313
writing score (0.012) (0.027) (0.026) (0.016) (0.023) (0.175) (0.209)
diff betw 6" & 0.015 0.027 0.017 0.001 0.022 0.001 -0.025
4" grd math (0.018) (0.024) (0.017) (0.020) (0.022) (0.102) (0.200)
diff betw 6" & -0.002 0.023 0.019 0.035 0.015 0.001 0.133
4™ grd reading (0.013) (0.019) (0.013) (0.028) (0.018) (0.103) (0.183)
diff betw 6" & -0.007 0.008 0.014 0.004 0.022 -0.001 -0.008
4™ grd writing (0.018) (0.015) (0.020) (0.022) (0.020) (0.103) (0.117)
diff betw 8" & 0.002 0.008 0.012 0.010 0.004 0.009 0.004
6™ grd math (0.012) (0.024) (0.025) (0.018) (0.017) (0.207) (0.104)
diff betw 8" & -0.015 -0.023 -0.009 0.051 -0.001 -0.209 0.139

6"grdreading  (0.012) (0.022) (0.025) (0.028) (0.020) (0.187) (0.103)



diff betw 8" & 0.008 -0.001 -0.026 -0.005 0.024 0.101 -0.006
6" grdwriting  (0.021) (0.017) (0.016) (0.017) (0.026) (0.186) (0.114)

! Standard errors are in parentheses. All regressions are weighted by number of students over whom the dependent
variableisaveraged, and all regressions have 1793 observations. The specification isthe same ascolumn 1V of Table
2, except that class size in instrumented as described at the top of the table.

2 The dependent variables are formed by dividing the average test score by the overall standard deviation of scoreson
that test in Connecticut.

% The most recent grade is 3" grade for the 4™ grade scores, 5™ grade for the 6" grade scores, 6™ grade for the 8" grade
scores, 5" grade for the difference between the 6™ and 4™ grade scores, and 6" grade for the difference between the 8"
and 6™ grade scores.

4 Column V shows the results of a spline specification. The estimate shown isthe estimated coefficient for class size
above 23.

® The independent variablein column VI is an indicator variable for class size of 30 or more having existed in at least
two out of the three of the most recent grades. The independent variable in column V11 is constructed similarly, but
indicates class size of 15 or less.




Table VI
IV Estimates of the Effects of Class Size, Differentiated by Demographics of School District.® See next page for notes and continuation of table.

dependent
variabl€?

4" grd math
score

4" grd reading
score

4™ grd writing
score

6" grd math
score

6" grd reading
score

6" grd writing
score

8" grd math
score

8" grd reading
score

8" grd writing
score

diff betw 6™ & 4"
grd math scores

diff betw 6™ & 4"
grd reading scores

diff betw 6™ & 4"
grd writing scores

independent
variable

avg classsize
up to 4" grd

avg classsize
up to 4" grd

avg classsize
up to 4" grd

avg classsize
up to 6" grd

avg classsize
up to 6" grd

avg classsize
up to 6" grd

avg classsize
up to 6" grd

avg classsize
up to 6" grd

avg classsize
up to 6" grd

avg classsize

in5" & 6" grds

avg classsize

in5" & 6" grds

avg classsize

in5" & 6" grds

each row below is aregression

low inc

-0.035
(0.019)

-0.005
(0.007)

0.012
(0.015)

-0.008
(0.014)

-0.008
(0.016)

0.018
(0.017)

0.021
(0.038)

0.018
(0.046)

0.048
(0.069)

0.020
(0.016)

0.007
(0.012)

0.025
(0.015)

med inc

-0.011
(0.018)

0.004
(0.006)

0.009
(0.015)

0.006
(0.015)

-0.013
(0.016)

0.021
(0.018)

0.012
(0.011)

0.021
(0.013)

0.022
(0.020)

-0.014
(0.023)

-0.019
(0.017)

0.020
(0.019)

high inc

-0.017
(0.020)

-0.001
(0.007)

0.022
(0.017)

-0.007
(0.016)

0.002
(0.018)

-0.006
(0.019)

-0.081
(0.109)

-0.198
(0.131)

-0.181
(0.198)

0.005
(0.029)

-0.009
(0.022)

0.018
(0.027)

each row below is aregression

high pov

-0.028
(0.019)

-0.003
(0.007)

0.013
(0.016)

0.003
(0.013)

-0.016
(0.013)

-0.003
(0.015)

0.007
(0.038)

0.052
(0.047)

0.106
(0.065)

0.017
(0.015)

-0.008
(0.012)

0.015
(0.015)

med pov

-0.024
(0.022)

-0.001
(0.008)

0.006
(0.018)

-0.003
(0.013)

-0.005
(0.013)

0.016
(0.015)

0.013
(0.011)

0.020
(0.013)

0.017
(0.018)

-0.018
(0.020)

-0.031
(0.016)

-0.001
(0.019)

low pov

-0.003
(0.019)

0.004
(0.007)

0.016
(0.016)

-0.001
(0.017)

0.024
(0.018)

-0.003
(0.021)

-0.053
(0.080)

-0.086
(0.097)

-0.194
(0.134)

-0.018
(0.023)

-0.030
(0.018)

0.009
(0.021)

each row below is aregression

high
%blk

-0.007
(0.017)

0.001
(0.006)

0.010
(0.014)

0.004
(0.012)

-0.015
(0.013)

0.017
(0.015)

0.011
(0.019)

0.018
(0.026)

0.041
(0.037)

0.025
(0.016)

-0.007
(0.011)

0.014
(0.013)

med %blk

0.009
(0.021)

0.005
(0.007)

-0.002
(0.017)

-0.009
(0.013)

0.002
(0.014)

0.019
(0.016)

0.013
(0.010)

0.023
(0.014)

0.010
(0.020)

-0.015
(0.013)

-0.028
(0.014)

-0.001
(0.018)

low %blk

0.001
(0.025)

0.008
(0.009)

0.028
(0.020)

0.003
(0.016)

-0.002
(0.018)

0.003
(0.020)

-0.009
(0.066)

-0.092
(0.090)

-0.108
(0.125)

0.016
(0.017)

-0.027
(0.016)

0.008
(0.019)
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diff betw 8" & 6"  avgclasssize
grd math scores in6"grd
diff betw 8" & 6"  avgclasssize

grd reading scores  in 6" grd

diff betw 8" & 6"  avgclasssize
grd writing scores  in 6" grd

0.017
(0.011)

-0.016
(0.012)

0.011
(0.018)

0.056
(0.030)

0.049
(0.032)

0.036
(0.044)

0.014
(0.060)

0.023
(0.064)

0.074
(0.074)

0.007
(0.012)

-0.016
(0.013)

0.013
(0.020)

0.023
(0.039)

0.009
(0.041)

0.067
(0.038)

0.082
(0.074)

0.062
(0.078)

0.049
(0.065)

0.007
(0.012)

-0.015
(0.013)

0.013
(0.019)

-0.002
(0.035)

0.017
(0.036)

0.001
(0.035)

-0.129
(0.089)

0.035
(0.094)

-0.011
(0.053)

! Each regression has the same specification as that of column IV in Table 4, except that the class size variable is interacted with indicator variables for a
demographic characteristic of the school district. Each set of 3 indicator variablesis mutually exclusive. For instance, the indicator for alow income district is
equal to 1 if the district has median household income less than or equal to the 25" percentile of median household income in Connecticut districts; O otherwise.
The indicator for a medium income district is equal to 1 if the district has median household income greater than the 25" percentile and less than 75" percentile;
0 otherwise. The indicator for a high income district is equal to 1 if the district has median household income greater than or equal to the 75" percentile; 0
otherwise. Theindicatorsfor low, medium, and high poverty are constructed similarly around the 25" and 75" percentil es of the poverty ratein Connecticut districts.
Theindicatorsfor low, medium, and high percent black are constructed similarly around the 25" and 75" percentiles of the percentage of the population that isblack

in Connecticut districts.
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IV Estimates of the Effects of Class Size, Generated by Regression Discontinuity Specifications'

Table VIl

Each cell below dotted line contains the estimate from a separate regression. See next page for notes and continuation of table.

I I " v Vv
cross-section method® within-district method*
using the predicted class size function
inits entirety within 8 students of a within 4 students of a solely at the solely at the
dependent variable? discontinuity discontinuity discontinuities discontinuities
4™ grade math -0.053 0.003 -0.001 0.039 -0.019
score (0.018) (0.027) (0.036) (0.089) (0.017)
[-2.944] [0.110] [-0.031] [0.441] [-1.118]
4™ grade reading -0.062 -0.034 -0.017 -0.116 0.001
score (0.026) (0.038) (0.051) (0.126) (0.007)
[-2.432] [-0.901] [-0.340] [-0.916] [0.079]
4™ grade writing -0.008 0.051 0.041 0.021 -0.029
score (0.018) (0.027) (0.036) (0.091) (0.019)
[-0.459] [1.900] [1.132] [0.229] [-1.526]
6" grade math -0.126 -0.088 -0.063 -0.046 0.001
score (0.017) (0.022) (0.029) (0.066) (0.012)
[-7.511] [-3.995] [-2.142] [-0.689] [0.082]
6™ grade reading -0.134 -0.096 -0.067 0.032 0.011
score (0.016) (0.0212) (0.029) (0.033) (0.012)
[-8.288] [-4.511] [-2.348] [0.966] [0.936]
6™ grade writing -0.057 -0.028 0.017 -0.019 -0.002
score (0.0212) (0.027) (0.037) (0.085) (0.027)
[-2.766] [-1.049] [0.456] [-0.224] [-0.091]
8" grade math -0.056 -0.054 -0.050 0.022 0.009
score (0.013) (0.017) (0.022) (0.050) (0.015)
[-4.313] [-3.223] [-2.263] [0.432] [0.648]
8" grade reading -0.093 -0.070 -0.046 -0.056 0.012
score (0.012) (0.015) (0.0212) (0.047) (0.012)
[-7.915] [-4.569] [-2.220] [-1.197] [1.053]
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8" grade writing -0.012 0.000 0.025 0.093 -0.012
score (0.016) (0.020) (0.028) (0.064) (0.043)
[-0.760] [-0.009] [0.915] [1.452] [-0.286]
diff betw 61 & 4™ -0.060 -0.038 -0.038 -0.048 0.018
rd mat E E E E E
grd math (0.011) (0.013) (0.019) (0.047) (0.023)
[-5.666] [-2.872] [-2.001] [-1.029] [0.783]
diff betw 61 & 4™ -0.056 -0.033 -0.027 -0.006 -0.021
grd reading (0.010) (0.013) (0.019) (0.046) (0.025)
[-5.379] [-2.510] [-1.427] [-0.124] [-0.820]
diff betw 61 & 4" -0.053 -0.038 -0.032 0.009 0.067
grd writing ) ) ) ) )
d writi 0.013 0.016 0.022 0.058 0.054
[-4.117] [-2.370] [-1.435] [0.161] [1.237]
diff betw 8" & 6 -0.013 -0.010 0.001 -0.027 -0.011
grd math (0.006) (0.007) (0.010) (0.025) (0.030)
[-2.212] [-1.390] [0.074] [-1.106] [-0.382]
diff betw 8" & 6 -0.006 -0.001 0.005 0.022 -0.040
grd reading (0.006) (0.007) (0.011) (0.026) (0.034)
[-0.936] [-0.123] [0.512] [0.858] [-1.170]
diff betw 8% & 6 -0.016 -0.024 -0.016 -0.020 0.418
grd writing (0.010) (0.012) (0.018) (0.042) (0.301)
[-1.661] [-1.921] [-0.900] [-0.487] [1.389]

L All regressions are weighted by the typical number of observations over which the dependent variableis averaged. Standard errorsin parentheses; t-statisticsin
square brackets. The independent variable is class size in most recent grade, instrumented by predicted classsize. There are 1793 observationsin column |, and
the t-statistics on predicted class size in the first-stage regressions are 14.8 (rows 1-3), 14.1 (rows 4-6 and 10-12), and 6.7 (rows 7-9 and 13-15). The numbers of
effective observationsin column Il are 1019 (rows 1-3), 1100 (rows 4-6 and 10-12), and 1017 (rows 7-9and 13-15), and the t-statistics on predicted class sizein
the first-stage regressions are 10.1 (rows 1-3), 9.4 (rows 4-6 and 10-12), and 4.6 (rows 7-9 and 13-15). The corresponding numbersin column 111 are 535, 559,
525, 7.9, 7.5, and 3.8. The corresponding numbersin column IV are 127, 104, 122, 2.2, 2.7, and 2.0. The corresponding numbersin columnV are 567, 652, 792,
8.4,13.4,and 3.8.

2 The dependent variables are formed by dividing the average test score by the overall standard deviation of scores on that test in Connecticut.

% The cross-section method treats the Connecticut data as though they were cross-section data and actual changesin the number of classes were not observed. The
predicted class size function uses the each district's maximum class size and the formula given by equation (7). See text for further explanation.

4 Thewithin-district method exploitsthe fact the Connecticut dataare panel dataand actual changesinthe number of classesare observed. Theegquation isestimated
in first-differences. the change in scores between back-to-back cohorts regressed on the change in class size, instrumented by the change in the predicted class size
function. The only changesin the predicted class size function used are those generated by a change in the number of classes.
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OLSand IV Estimates of the Effects of Racial Composition on Student Test Scores in Math, Reading, and Writing*

Table VIII

Each cell below dotted line contains the estimated coefficient from a separate regression. See next page for notes and continuation of table.

dependent
variabl€?

4" grd math
score

4" grd
reading score

4" grd
writing score

6" grd math
score

6" grd
reading score

6" grd
writing score

8" grd math
score

8" grd
reading score

independent
variable

%black in
class up to 3
grd

%black in
class up to 3
grd

%black in
class up to 3
grd

%black in
classup to 5"
grd

%black in
classup to 5"
grd

%black in
classup to 5"
grd

%black in
classup to 6"
grd

%black in
classup to 6"
grd

cohort
fixed
effects

-0.049
(0.001)
[-50.820]

-0.024
(0.002)
[-14.514]

-0.025
(0.001)
[-42.432]

-0.065
(0.001)
[-55.404]

-0.062
(0.001)
[-57.625]

-0.022
(0.001)
[-35.712]

-0.062
(0.001)
[-52.564]

-0.063
(0.001)
[-56.704]

cohort fixed

effects &

demographic

controls

-0.024
(0.004)
[-6.704]

-0.017
(0.009)
[-1.952]

-0.013
(0.002)
[-5.871]

-0.082
(0.004)
[-20.232]

-0.074
(0.004)
[-20.653]

-0.024
(0.003)
[-8.659]

-0.082
(0.004)
[-21.368]

-0.061
(0.004)
[-15.828]

school district
fixed effects &
cohort fixed

effects

0.003
(0.007)
[0.440]

-0.009
(0.018)
[-0.497]

0.008
(0.005)
[1.786]

-0.021
(0.007)
[-2.840]

-0.012
(0.006)
[-1.914]

-0.003
(0.006)
[-0.546]

-0.028
(0.006)
[-4.401]

0.001
(0.006)
[-0.054]

v

school district &
cohort fixed
effects, district-
specific linear
time trends

-0.015
(0.007)
[-2.244]

-0.026
(0.024)
[-1.092]

-0.005
(0.006)
[-0.774]

-0.027
(0.009)
[-3.086]

-0.025
(0.008)
[-3.299]

0.001
(0.007)
[0.009]

-0.001
(0.008)
[-0.092]

-0.008
(0.009)
[-0.929]

\%

same as previous
column, but
independent var is
instrumented by
enrollment residuals

-0.014
(0.008)
[-1.675]

-0.028
(0.026)
[-1.068]

-0.004
(0.006)
[-0.555]

-0.013
(0.009)
[-1.444]

-0.015
(0.008)
[-1.778]

0.005
(0.008)
[0.707]

0.009
(0.008)
[1.073]

-0.004
(0.009)
[-0.434]

VI

same as previous

column, but

independent var is
instrumented by

birth residuals

-0.014
(0.034)
[-0.409]

-0.022
(0.127)
[-0.173]

-0.005
(0.031)
[-0.160]

-0.012
(0.044)
[-0.273]

-0.017
(0.049)
[-0.345]

-0.006
(0.041)
[-0.149]

0.016
(0.043)
[0.376]

0.001
(0.052)
[0.019]
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8" grd
writing score

diff betw 6 &
4" grd math
scores

diff betw 6™ &
4" grd reading
scores

diff betw 6 &
4™ grd writing
scores

diff betw 8" &
6" grd math
scores

diff betw 8" &
6" grd reading
scores

diff betw 8" &
6" grd writing
scores

%black in
classup to 6"
grd

%black in
classin 4"
and 5" grds

%black in
classin 4"
and 5" grds

%black in
classin 4"
and 5" grds

%black in
classin 6"
grd

%black in
classin 6"
grd

%black in
classin 6"
grd

-0.024
(0.001)
[-32.535]

-0.022
(0.001)
[-24.562]

-0.041
(0.001)
[-46.728]

-0.002
(0.001)
[-3.349]

-0.002
(0.001)
[-2.204]

-0.002
(0.001)
[-2.959]

-0.005
(0.001)
[-6.463]

-0.035
(0.003)
[-10.311]

-0.053
(0.004)
[-13.029]

-0.056
(0.003)
[-17.345]

-0.008
(0.003)
[-2.194]

-0.006
(0.003)
[-2.281]

0.012
(0.003)
[3.425]

-0.012
(0.004)
[-3.121]

-0.018
(0.006)
[-2.913]

-0.002
(0.009)
[-0.273]

-0.009
(0.006)
[-1.526]

-0.011
(0.008)
[-1.402]

-0.009
(0.007)
[-1.275]

0.010
(0.008)
[1.310]

-0.012
(0.008)
[-1.495]

-0.011
(0.009)
[-1.297]

0.001
(0.011)
[0.079]

0.001
(0.008)
[0.076]

0.008
(0.010)
[0.727]

0.017
(0.009)
[1.872]

0.015
(0.010)
[1.449]

-0.014
(0.012)
[-1.211]

-0.008
(0.009)
[-0.838]

0.007
(0.012)
[0.588]

0.001
(0.008)
[0.145]

0.017
(0.011)
[1.576]

0.018
(0.010)
[1.842]

0.020
(0.011)
[1.892]

-0.018
(0.013)
[-1.406]

-0.013
(0.045)
[-0.287]

0.007
(0.062)
[0.113]

-0.002
(0.043)
[-0.047]

-0.017
(0.056)
[-0.304]

0.019
(0.056)
[0.339]

0.022
(0.056)
[0.392]

0.001
(0.064)
[0.016]

1 Except for "percent-black-in-class" having replaced class size, the specifications are exactly like those of Table 2 and columns 1V and V of Table 4.
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TableIX

OLSand IV Estimates of the Effects of Gender Composition on Student Test Scores in Math, Reading, and Writing*

Each cell below dotted line contains the estimated coefficient from a separate regression. See next page for notes and continuation of table.

dependent
variabl€?

4" grd math
score

4" grd
reading score

4" grd
writing score

6" grd math
score

6" grd
reading score

6" grd
writing score

8" grd math
score

8" grd
reading score

independent
variable

%femalein
class up to 3
grd

%femalein
class up to 3
grd

%femalein
class up to 3
grd

%femalein
classup to 5"
grd

%femalein
classup to 5"
grd

%femalein
classup to 5"
grd

%femalein
classup to 6"
grd

%femalein
classup to 6"
grd

cohort fixed
effects

-0.034
(0.016)
[-2.060]

-0.007
(0.021)
[-0.352]

-0.007
(0.008)
[-0.882]

-0.032
(0.017)
[-1.955]

-0.016
(0.016)
[-1.031]

-0.003
(0.007)
[-0.409]

-0.024
(0.021)
[-1.123]

-0.019
(0.018)
[-1.059]

cohort fixed effects

& demographic
controls

-0.004
(0.008)
[-0.515]

0.005
(0.027)
[0.175]

0.007
(0.005)
[1.307]

-0.008
(0.009)
[-0.894]

0.001
(0.007)
[0.087]

0.004
(0.006)
[0.750]

0.001
(0.009)
[-0.018]

-0.001
(0.008)
[-0.176]

school district fixed
effects & cohort fixed

effects

0.006
(0.005)
[1.204]

-0.007
(0.023)
[-0.294]

0.009
(0.004)
[2.493]

-0.003
(0.005)
[-0.487]

-0.001
(0.003)
[-0.183]

0.009
(0.004)
[2.497]

-0.002
(0.004)
[-0.430]

-0.001
(0.004)
[-0.165]

v

school district & cohort

fixed effects, district-
specific linear time
trends

0.007
(0.005)
[1.288]

-0.006
(0.029)
[-0.205]

0.013
(0.004)
[2.838]

0.008
(0.005)
[1.661]

0.001
(0.004)
[0.382]

0.014
(0.004)
[3.719]

0.010
(0.004)
[2.360]

0.004
(0.005)
[0.812]

\%

same as previous column,
but independent var is
instrumented by
enrollment residuals

0.010
(0.005)
[1.930]

-0.014
(0.045)
[-0.307]

0.014
(0.006)
[2.457]

0.003
(0.007)
[0.461]

-0.003
(0.004)
[-0.739]

0.018
(0.005)
[3.581]

0.006
(0.006)
[1.172]

0.008
(0.006)
[1.399]
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8" grd
writing score

diff betw 6 &
4" grd math
scores

diff betw 6" &
4" grd reading
scores

diff betw 6" &
4™ grd writing
scores

diff betw 8" &
6" grd math
scores

diff betw 8" &
6" grd reading
scores

diff betw 8" &
6" grd writing
scores

%femalein
classup to 6"
grd

%femalein
classin 4"
and 5" grds

%femalein
classin 4"
and 5" grds

%femalein
classin 4"
and 5" grds

%femalein
classin 6"
grd

%femalein
classin 6"
grd

%femalein
classin 6"
grd

0.007
(0.011)
[0.634]

-0.003
(0.008)
[-0.405]

-0.019
(0.010)
[-1.968]

0.005
(0.005)
[1.065]

-0.003
(0.006)
[-0.535]

0.001
(0.005)
[0.174]

0.001
(0.007)
[0.181]

0.016
(0.008)
[2.088]

0.004
(0.008)
[0.520]

0.005
(0.006)
[0.895]

0.009
(0.006)
[1.516]

0.001
(0.006)
[0.057]

-0.003
(0.005)
[-0.584]

0.005
(0.008)
[0.649]

0.015
(0.006)
[2.641]

0.003
(0.007)
[0.388]

-0.002
(0.003)
[-0.585]

0.006
(0.005)
[1.244]

-0.005
(0.005)
[-1.061]

0.002
(0.005)
[0.400]

0.007
(0.004)
[1.871]

0.018
(0.006)
[2.882]

0.002
(0.006)
[0.369]

-0.002
(0.003)
[-0.490]

0.005
(0.005)
[0.919]

0.001
(0.005)
[0.274]

0.006
(0.006)
[1.043]

0.004
(0.009)
[0.432]

0.021
(0.007)
[3.038]

-0.002
(0.009)
[-0.270]

-0.003
(0.004)
[-0.869]

0.005
(0.003)
[2.081]

-0.001
(0.005)
[-0.247]

0.004
(0.005)
[0.873]

0.004
(0.003)
[1.628]

! Except for "percent-female-in-class' having replaced class size, the specifications are exactly like those of Table 2 and column IV of Table 4.
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