MATHEMATICAL METHODS AND MODELS FOR ECONOMISTS

ANGEL DE LA FUENTE Instituto de Análisis Económica (CSIC), Barcelona

Contents

Preface and Acknowledgments	
PART I. PRELIMINARIES	
1. Review of Basic Concepts	3
1. Sets	3
2. A Bit of Logic	6
a. Properties and Quantifiers	6
b. Implication	9
c. Methods of Proof	11
3. Relations	15
a. Equivalence Relations and Decomposition of a Set	
into Classes	17
b. Order Relations and Ordered Sets	18
4. Functions	20
5. Algebraic Structures	24
a. Groups and Fields	25
b. Vector Spaces	28
6. The Real Number System	29
a. A Set of Axioms for the Real Number System	30
b. The Supremum Property	31
c. Absolute Value	35
7. Complex Numbers	36
Bibliography	37
Notes	38
2. Metric and Normed Spaces	39
1. Metric and Normed Spaces	40
2. Convergence of Sequences in Metric Spaces	46
3. Sequences in \mathbb{R} and \mathbb{R}^m	49
4. Open and Closed Sets	58

vi	Contents		
	a. Interior, Boundary and Closure of a Set	59	
	b. Limit Points and a Sequential Characterization in Terms		
	of Sequences	 61	
5.	Limits of Functions	64	
6.	Continuity in Metric Spaces	66	
7.	Complete Metric Spaces and the Contraction Mapping		
	Theorem	79	
	a. Cauchy Sequences and Complete Metric Spaces	80	
	b. Operators and the Contraction Mapping Theorem	85	
8.	Compactness and the Extreme-Value Theorem	90	
	a. Compactness and Some Characterizations	90	
	b. Relation with Other Topological Properties	95	
	c. Continuous Functions on Compact Sets	98	
9.	Connected Sets	100	
10.	Equivalent Metrics and Norms	104	
	Continuity of Correspondences in E^n	108	
	liography	114	
	tes	115	
3.	Vector Spaces and Linear Transformations	117	
1.]	Linear Independence and Bases	117	
	Linear Transformations	122	
ł	a. Image and Kernel of a Linear Function	123	
1	b. The Inverse of a Linear Transformation	126	
3.]	Isomorphisms	127	
4.]	Linear Mappings between Normed Spaces	132	
ä	a. Linear Homeomorphisms	134	
1	b. The Norm of a Linear Mapping	135	
(c. The Normed Vector Space $L(\mathbb{R}^n, \mathbb{R}^m)$	137	
	Change of Basis and Similarity	144	
6. 3	Eigenvalues and Eigenvectors	146	
Ap	pendix: Polynomial Equations	152	
Bit	liography	154	
No	tes	155	
4.	Differential Calculus	156	
1. 1	Differentiable Univariate Real Functions	156	
2. 3	Partial and Directional Derivatives	163	
3. 3	Differentiability	169	
4. (Continuous Differentiability	179	
5. 3	Homogeneous Functions	187	
Bib	bliography	190	
No	tes	190	
8.1		2.16-1	

Contents

PART II. STATICS	
5. Static Models and Comparative Statics	195
1. Linear Models	196
2. Comparative Statics and the Implicit-Function Theorem	200
a. Derivatives of Implicit Functions and Comparative Statics	202
b. The Implicit-Function Theorem	205
3. Existence of Equilibrium	218
a. The Intermediate Value Theorem	219
b. Fixed Point Theorems	221
4. Problems	224
Bibliography	227
Notes	228
6. Convex Sets and Concave Functions	229
1. Convex Sets and Separation Theorems in \mathbb{R}^n	229
a. Convex Combinations and Convex Hull	231
b. Topological Properties of Convex Sets	234
c. Relative Interior and Boundary of a Convex Set	237
d. Separation Theorems	241
2. Concave Functions	245
a. Some Characterizations	246
b. Properties of Concave Functions	251
c. Concavity for Smooth Functions	258
3. Quasiconcave Functions	261
Appendix: Quadratic Forms	268
Bibliography	272
Notes	272
7. Static Optimization	274
1. Nonlinear Programming	274
a. Convex Constraint Set	277
b. Equality Constraints: The Lagrange Problem	282
c. Inequality Constraints: The Kuhn–Tucker Problem	291
d. Concave Programming without Differentiability	297
2. Comparative Statics and Value Functions	300
a. The Theorem of the Maximum	301
b. Comparative Statics of Smooth Optimization Problems	309
c. Value Functions and Envelope Theorems	312
3. Problems and Applications	316
a. Profit Maximization by a Competitive Firm	317
b. Implicit Contracts	319
Bibliography	323
Notes	324

vii

vii	Contents	
	. Some Applications to Microeconomics	325
	Consumer Preferences and Utility	327
	a. Preference Relations	327
	b. Representation by a Utility Function	332
	c. Smooth Preferences	338
2.	Consumer Theory	339
	a. Utility Maximization and Ordinary Demand Functions	340
	b. Expenditure Minimization and Compensated Demand	346
	c. Relation between Compensated and Ordinary Demands: The	
	Slutsky Equation	352
3.	Walrasian General Equilibrium in a Pure Exchange Economy	354
	a. Aggregate Demand	356
	b. Existence of Competitive Equilibrium	360
	c. Welfare Properties of Competitive Equilibrium	368
4.	Games in Normal Form and Nash Equilibrium	375
5.	Some Useful Models of Imperfect Competition	379
	a. Increasing Returns to Specialization in a Dixit-Stiglitz Model	380
	b. Fixed Costs, Market Power and Excess Entry in a	
	Cournot Model	383
Bi	bliography	385
No	otes	387

PART III. DYNAMICS

9. Dynamical Systems. I: Basic Concepts and Scalar Systems	391
1. Difference and Differential Equations: Basic Concepts	391
a. Geometrical Interpretation	393
b. Initial- and Boundary-Value Problems	394
c. Some Definitions	396
d. Existence, Uniqueness, and Other Properties of Solutions	398
2. Autonomous Systems	401
a. The Flow of an Autonomous System	402
b. Asymptotic Behavior	408
c. Steady States and Stability	409
3. Autonomous Differential Equations	411
a. Linear Equations with Constant Coefficients	412
b. Nonlinear Autonomous Equations	414
c. A Note on Comparative Dynamics	418
4. Autonomous Difference Equations	419
a. Linear Equations with Constant Coefficients	419
b. Nonlinear Equations	421
5. Solution of Nonautonomous Linear Equations	428
6. Solutions of Continuous-Time Systems	430

Contanta

Contents	ix	
a. Local Existence and Uniqueness	431	
b. Maximal Solutions	437	
c. Dependence on Initial Conditions and Parameters	444	
Bibliography	454	
Notes	455	
10. Dynamical Systems. II: Higher Dimensions	457	
1. Some General Results on Linear Systems	457	
2. Solution of Linear Systems with Constant Coefficients	459	
a. Solution by Diagonalization	460	
b. Imaginary Eigenvalues	463	
c. Repeated Eigenvalues	465	
d. Nonhomogeneous Systems and Stability Conditions	466	
e. Stable and Unstable Spaces	470	
f. Linear Systems on the Plane	473	
3. Autonomous Nonlinear Systems	484	
a. Phase Diagrams for Planar Systems	484	
b. Local Analysis by Linearization	487	
4. Problems	489	
Bibliography	491	
Notes	492	
11. Dynamical Systems III: Some Applications	494	
1. A Dynamic IS-LM Model	494	
a. Phase Diagram and Stability Analysis	496	
b. Effects of Monetary Policy	501	
2. An Introduction to Perfect-Foresight Models	503	
a. A Model of Stock Prices	503	
b. Dornbusch's Overshooting Model	513	
3. Neoclassical Growth Models	518	
a. Technology and Factor Prices in a Neoclassical World	518	
b. The Solow Model	522	
c. An Overlapping-Generations Model (Diamond)	527	
4. Some Useful Techniques	534	
a. Linearization and Derivation of a Convergence Equation	534	
b. Solving the Solow Model with Mathematica	538	
5. Problems	540	
Bibliography	546	
Notes	547	
12. An Introduction to Dynamic Optimization 54		
1. Dynamic Programming	549	
a. The Principle of Optimality and Bellman's Equation	550	
b. Some Results for Stationary Discounted Problems	558	

x Contents	
2. Optimal Control	566
a. The Maximum Principle	567
b. Transversality and Sufficient Conditions	572
c. Constraints Involving State and Control Variables	578
Bibliography	580
Notes	580
13. Some Applications of Dynamic Optimization	582
1. Search Models	582
a. The Basic Model of Job Search	583
b. A Search-Based Macro Model	589
2. Optimal Growth in Discrete Time	598
a. Properties of the Policy Function and the Optimal	
Capital Sequence	602
b. The Euler Equation and Dynamics	604
3. Investment with Installation Costs	609
a. A Model of Investment with Installation Costs	610
b. Capital Accumulation and Stock Prices in a Small	
Open Economy	617
4. The Cass–Koopmans Model and Some Applications	622
a. Optimal Consumption for an Infinitely-Lived Household	622
b. Equilibrium and Dynamics in a Model with Taxes on	
Factor Income	625
c. The Welfare Cost of Factor Taxes	629
5. Problems	643
a. An Efficiency-Wage Model	644
b. Unemployment in a Matching Model	646
c. The Behaviour of the Savings Rate in the Cass-	
Koopmans Model	647
d. Productive Government Spending in a Model of	
Endogenous Growth	649
e. A Model of Endogenous R&D	650
Bibliography	653
Notes	654
Appendix. Solutions to the Problems	659
Subject Index	827
Author Index	829