Econometric Analysis of Cross Section and Panel Data

Jeffrey M. Wooldridge

The MIT Press Cambridge, Massachusetts London, England

	Prefac	e	xvii
	Ackno	owledgments	xxiii
I	INTR	ODUCTION AND BACKGROUND	1
1	Introd	uction	3
1.1	Causa	l Relationships and Ceteris Paribus Analysis	3
1.2	The St	tochastic Setting and Asymptotic Analysis	4
	1.2.1	Data Structures	4
	1.2.2	Asymptotic Analysis	7
1.3	Some	Examples	7
1.4	Why 1	Not Fixed Explanatory Variables?	9
2	Condit	tional Expectations and Related Concepts in Econometrics	13
2.1	The R	ole of Conditional Expectations in Econometrics	13
2.2	Featur	res of Conditional Expectations	14
	2.2.1	Definition and Examples	14
	2.2.2	Partial Effects, Elasticities, and Semielasticities	15
	2.2.3	The Error Form of Models of Conditional Expectations	18
	2.2.4	Some Properties of Conditional Expectations	19
	2.2.5	Average Partial Effects	22
2.3	Linear	Projections	24
	Problems		
	Appen	ndix 2A	29
	2.A.1	Properties of Conditional Expectations	29
	2.A.2	Properties of Conditional Variances	31
	2.A.3	Properties of Linear Projections	32
3	Basic .	Asymptotic Theory	35
3.1	Conve	ergence of Deterministic Sequences	35
3.2	Conve	ergence in Probability and Bounded in Probability	36
3.3	Conve	ergence in Distribution	38
3.4	Limit	Theorems for Random Samples	39
3.5	Limiti	ng Behavior of Estimators and Test Statistics	40
	3.5.1	Asymptotic Properties of Estimators	40
	3.5.2	Asymptotic Properties of Test Statistics	43
	Proble	ems	45

vi Contents

II	LINE	AR MODELS	47
4	The S	ingle-Equation Linear Model and OLS Estimation	49
4.1	Overv	iew of the Single-Equation Linear Model	49
4.2	Asym	ptotic Properties of OLS	51
	4.2.1	Consistency	52
	4.2.2	Asymptotic Inference Using OLS	54
	4.2.3	Heteroskedasticity-Robust Inference	55
	4.2.4	Lagrange Multiplier (Score) Tests	58
4.3	OLS S	Solutions to the Omitted Variables Problem	61
	4.3.1	OLS Ignoring the Omitted Variables	61
	4.3.2	The Proxy Variable-OLS Solution	63
	4.3.3	Models with Interactions in Unobservables	67
4.4	Prope	rties of OLS under Measurement Error	70
	4.4.1	Measurement Error in the Dependent Variable	71
	4.4.2	Measurement Error in an Explanatory Variable	73
	Proble	ems	76
5	Instru	mental Variables Estimation of Single-Equation Linear Models	83
5.1	Instru	mental Variables and Two-Stage Least Squares	83
	5.1.1	Motivation for Instrumental Variables Estimation	83
	5.1.2	Multiple Instruments: Two-Stage Least Squares	90
5.2	Gener	ral Treatment of 2SLS	92
	5.2.1	Consistency	92
	5.2.2	Asymptotic Normality of 2SLS	94
	5.2.3	Asymptotic Efficiency of 2SLS	96
	5.2.4	Hypothesis Testing with 2SLS	97
	5.2.5	Heteroskedasticity-Robust Inference for 2SLS	100
	5.2.6	Potential Pitfalls with 2SLS	101
5.3		lutions to the Omitted Variables and Measurement Error	
	Proble	ems	105
	5.3.1	Leaving the Omitted Factors in the Error Term	105
	5.3.2	Solutions Using Indicators of the Unobservables	105
	Proble	ems	107
6	Additi	ional Single-Equation Topics	115
6.1	Estimation with Generated Regressors and Instruments		115

	6.1.1	OLS with Generated Regressors	115
	6.1.2	2SLS with Generated Instruments	116
	6.1.3	Generated Instruments and Regressors	117
6.2	Some	Specification Tests	118
	6.2.1	Testing for Endogeneity	118
	6.2.2	Testing Overidentifying Restrictions	122
	6.2.3	Testing Functional Form	124
	6.2.4	Testing for Heteroskedasticity	125
6.3	Single	-Equation Methods under Other Sampling Schemes	128
	6.3.1	Pooled Cross Sections over Time	128
	6.3.2	Geographically Stratified Samples	132
	6.3.3	Spatial Dependence	134
	6.3.4	Cluster Samples	134
	Proble	ems	135
	Apper	ndix 6A	139
7	Estima	ating Systems of Equations by OLS and GLS	143
7.1	Introd	luction	143
7.2	Some	Examples	143
7.3	Syster	n OLS Estimation of a Multivariate Linear System	147
	7.3.1	Preliminaries	147
	7.3.2	Asymptotic Properties of System OLS	148
	7.3.3	Testing Multiple Hypotheses	153
7.4	Consi	stency and Asymptotic Normality of Generalized Least	
	Squar	es	153
	7.4.1	Consistency	153
	7.4.2	Asymptotic Normality	156
7.5	Feasil	ble GLS	157
	7.5.1	Asymptotic Properties	157
	7.5.2	Asymptotic Variance of FGLS under a Standard	
		Assumption	160
7.6	Testin	g Using FGLS	162
7.7		ngly Unrelated Regressions, Revisited	163
	7.7.1	Comparison between OLS and FGLS for SUR Systems	164
	7.7.2	Systems with Cross Equation Restrictions	167
	7.7.3	Singular Variance Matrices in SUR Systems	167

7.8	The L	inear Panel Data Model, Revisited	169
	7.8.1	Assumptions for Pooled OLS	170
	7.8.2	Dynamic Completeness	173
	7.8.3	A Note on Time Series Persistence	175
	7.8.4	Robust Asymptotic Variance Matrix	175
	7.8.5	Testing for Serial Correlation and Heteroskedasticity after	
		Pooled OLS	176
	7.8.6	Feasible GLS Estimation under Strict Exogeneity	178
	Proble	ems	179
8	System	n Estimation by Instrumental Variables	183
8.1	Introd	luction and Examples	183
8.2	A Ger	neral Linear System of Equations	186
8.3	Gener	alized Method of Moments Estimation	188
	8.3.1	A General Weighting Matrix	188
	8.3.2	The System 2SLS Estimator	191
	8.3.3	The Optimal Weighting Matrix	192
	8.3.4	The Three-Stage Least Squares Estimator	194
	8.3.5	Comparison between GMM 3SLS and Traditional 3SLS	196
8.4	Some	Considerations When Choosing an Estimator	198
8.5	Testin	g Using GMM	199
	8.5.1	Testing Classical Hypotheses	199
	8.5.2	Testing Overidentification Restrictions	201
8.6	More	Efficient Estimation and Optimal Instruments	202
	Proble	ems	205
9	Simul	taneous Equations Models	209
9.1		cope of Simultaneous Equations Models	209
9.2	Identification in a Linear System		
	9.2.1	Exclusion Restrictions and Reduced Forms	211
	9.2.2	General Linear Restrictions and Structural Equations	215
	9.2.3	Unidentified, Just Identified, and Overidentified Equations	220
9.3	Estima	ation after Identification	221
	9.3.1	The Robustness-Efficiency Trade-off	221
	9.3.2	When Are 2SLS and 3SLS Equivalent?	224
	9.3.3	Estimating the Reduced Form Parameters	224
9.4	Addit	ional Topics in Linear SEMs	225

	9.4.1	Using Cross Equation Restrictions to Achieve Identification	225
	9.4.2	Using Covariance Restrictions to Achieve Identification	227
	9.4.3	Subtleties Concerning Identification and Efficiency in Linear	
		Systems	229
9.5	SEMs	Nonlinear in Endogenous Variables	230
	9.5.1	Identification	230
	9.5.2	Estimation	235
9.6	Differe	nt Instruments for Different Equations	237
	Proble	ms	239
10	Basic I	Linear Unobserved Effects Panel Data Models	247
10.1	Motiva	ation: The Omitted Variables Problem	247
10.2	Assum	ptions about the Unobserved Effects and Explanatory	
	Variab	les	251
	10.2.1	Random or Fixed Effects?	251
	10.2.2	Strict Exogeneity Assumptions on the Explanatory	
		Variables	252
	10.2.3	Some Examples of Unobserved Effects Panel Data Models	254
10.3	Estima	ting Unobserved Effects Models by Pooled OLS	256
10.4	Rando	m Effects Methods	257
	10.4.1	Estimation and Inference under the Basic Random Effects	
		Assumptions	257
	10.4.2	Robust Variance Matrix Estimator	262
	10.4.3	A General FGLS Analysis	263
	10.4.4	Testing for the Presence of an Unobserved Effect	264
10.5	Fixed 1	Effects Methods	265
	10.5.1	Consistency of the Fixed Effects Estimator	265
	10.5.2	Asymptotic Inference with Fixed Effects	269
	10.5.3	The Dummy Variable Regression	272
	10.5.4	Serial Correlation and the Robust Variance Matrix	
		Estimator	274
	10.5.5	Fixed Effects GLS	276
	10.5.6	Using Fixed Effects Estimation for Policy Analysis	278
10.6		Differencing Methods	279
	10.6.1		279
	10.6.2	Robust Variance Matrix	282

X Contents

	10.6.3	Testing for Serial Correlation	282
	10.6.4	Policy Analysis Using First Differencing	283
10.7	Compa	arison of Estimators	284
	10.7.1	Fixed Effects versus First Differencing	284
	10.7.2	The Relationship between the Random Effects and Fixed	
		Effects Estimators	286
	10.7.3	The Hausman Test Comparing the RE and FE Estimators	288
	Proble	ms	291
11	More 7	Topics in Linear Unobserved Effects Models	299
11.1		erved Effects Models without the Strict Exogeneity	
	Assum	ption	299
	11.1.1	Models under Sequential Moment Restrictions	299
	11.1.2	Models with Strictly and Sequentially Exogenous	
		Explanatory Variables	305
	11.1.3	Models with Contemporaneous Correlation between Some	
		Explanatory Variables and the Idiosyncratic Error	307
	11.1.4	Summary of Models without Strictly Exogenous	
		Explanatory Variables	314
11.2		s with Individual-Specific Slopes	315
	11.2.1	A Random Trend Model	315
		General Models with Individual-Specific Slopes	317
11.3	GMM	Approaches to Linear Unobserved Effects Models	322
	11.3.1	Equivalence between 3SLS and Standard Panel Data	
		Estimators	322
		Chamberlain's Approach to Unobserved Effects Models	323
11.4		nan and Taylor-Type Models	325
11.5		ng Panel Data Methods to Matched Pairs and Cluster	220
	Sample		328
	Proble	ms	332
Ш	GENE	RAL APPROACHES TO NONLINEAR ESTIMATION	339
12	M-Esti	mation	341
12.1	Introdu	uction	341
12.2	Identifi	ication, Uniform Convergence, and Consistency	345
12.3		ototic Normality	349
	_		

12.4	Two-S	tep M-Estimators	353
12		Consistency	353
		Asymptotic Normality	354
12.5		ting the Asymptotic Variance	356
12.0		Estimation without Nuisance Parameters	356
		Adjustments for Two-Step Estimation	361
12.6		hesis Testing	362
	12.6.1		362
	12.6.2	Score (or Lagrange Multiplier) Tests	363
		Tests Based on the Change in the Objective Function	369
	12.6.4	5	371
12.7	Optimi	ization Methods	372
	12.7.1		372
	12.7.2		374
	12.7.3	The Generalized Gauss-Newton Method	375
	12.7.4	Concentrating Parameters out of the Objective Function	376
12.8	Simula	tion and Resampling Methods	377
	12.8.1	Monte Carlo Simulation	377
	12.8.2	Bootstrapping	378
	Proble	ms	380
13	Maxim	num Likelihood Methods	385
13.1	Introd	uction	385
13.2	Prelim	inaries and Examples	386
13.3		al Framework for Conditional MLE	389
13.4	Consis	tency of Conditional MLE	391
13.5	Asymp	ptotic Normality and Asymptotic Variance Estimation	392
	13.5.1	Asymptotic Normality	392
	13.5.2	Estimating the Asymptotic Variance	395
13.6	Hypot	hesis Testing	397
13.7	Specifi	cation Testing	398
13.8	Partial	Likelihood Methods for Panel Data and Cluster Samples	401
	13.8.1	Setup for Panel Data	401
	13.8.2	Asymptotic Inference	405
	13.8.3	Inference with Dynamically Complete Models	408
	13.8.4	Inference under Cluster Sampling	409

xii Contents

13.9	Panel Data Models with Unobserved Effects	410
	13.9.1 Models with Strictly Exogenous Explanatory Variables	410
	13.9.2 Models with Lagged Dependent Variables	412
13.10	Two-Step MLE	413
	Problems	414
	Appendix 13A	418
14	Generalized Method of Moments and Minimum Distance Estimation	421
14.1	Asymptotic Properties of GMM	421
14.2	Estimation under Orthogonality Conditions	426
14.3	Systems of Nonlinear Equations	428
14.4	Panel Data Applications	434
14.5	Efficient Estimation	436
	14.5.1 A General Efficiency Framework	436
	14.5.2 Efficiency of MLE	438
	14.5.3 Efficient Choice of Instruments under Conditional Moment	
	Restrictions	439
14.6	Classical Minimum Distance Estimation	442
	Problems	446
	Appendix 14A	448
IV	NONLINEAR MODELS AND RELATED TOPICS	451
15	Discrete Response Models	453
15.1	Introduction	453
15.2	The Linear Probability Model for Binary Response	454
15.3	Index Models for Binary Response: Probit and Logit	457
15.4	Maximum Likelihood Estimation of Binary Response Index	
	Models	460
15.5	Testing in Binary Response Index Models	461
	15.5.1 Testing Multiple Exclusion Restrictions	461
	47.75 m 1 37 H 27 4 4 5	463
	15.5.2 Testing Nonlinear Hypotheses about β	403
	15.5.2 Testing Nonlinear Hypotheses about β15.5.3 Tests against More General Alternatives	463
15.6		
15.6 15.7	15.5.3 Tests against More General Alternatives	463
	15.5.3 Tests against More General Alternatives Reporting the Results for Probit and Logit	463 465 470 470
	15.5.3 Tests against More General Alternatives Reporting the Results for Probit and Logit Specification Issues in Binary Response Models	463 465 470

Contents xiii

	15.7.3	A Binary Endogenous Explanatory Variable	477
	15.7.4	Heteroskedasticity and Nonnormality in the Latent	
		Variable Model	479
	15.7.5	Estimation under Weaker Assumptions	480
15.8	Binary	Response Models for Panel Data and Cluster Samples	482
	15.8.1	Pooled Probit and Logit	482
	15.8.2	Unobserved Effects Probit Models under Strict Exogeneity	483
	15.8.3	Unobserved Effects Logit Models under Strict Exogeneity	490
	15.8.4	Dynamic Unobserved Effects Models	493
	15.8.5	Semiparametric Approaches	495
	15.8.6	Cluster Samples	496
15.9	Multine	omial Response Models	497
	15.9.1	Multinomial Logit	497
	15.9.2	Probabilistic Choice Models	500
15.10	Ordere	d Response Models	504
	15.10.1	Ordered Logit and Ordered Probit	504
	15.10.2	Applying Ordered Probit to Interval-Coded Data	508
	Probler	ns	509
16	Corner	Solution Outcomes and Censored Regression Models	517
16.1	Introdu	action and Motivation	517
16.2	Deriva	tions of Expected Values	521
16.3	Inconsi	stency of OLS	524
16.4	Estima	tion and Inference with Censored Tobit	525
16.5	Report	ing the Results	527
16.6	Specific	cation Issues in Tobit Models	529
	16.6.1	Neglected Heterogeneity	529
	16.6.2	Endogenous Explanatory Variables	530
	16.6.3	Heteroskedasticity and Nonnormality in the Latent	
		Variable Model	533
	16.6.4	Estimation under Conditional Median Restrictions	535
16.7	Some A	Alternatives to Censored Tobit for Corner Solution	
	Outcor	nes	536
16.8	Applyi	ng Censored Regression to Panel Data and Cluster Samples	538
	16.8.1	Pooled Tobit	538
	16.8.2	Unobserved Effects Tobit Models under Strict Exogeneity	540

	16.8.3	Dynamic Unobserved Effects Tobit Models	542
	Proble	ms	544
17	Sample	e Selection, Attrition, and Stratified Sampling	551
17.1	Introdu	uction	551
17.2	When	Can Sample Selection Be Ignored?	552
	17.2.1	Linear Models: OLS and 2SLS	552
	17.2.2	Nonlinear Models	556
17.3	Selection	on on the Basis of the Response Variable: Truncated	
	Regres	sion	558
17.4	A Prob	pit Selection Equation	560
	17.4.1	Exogenous Explanatory Variables	560
	17.4.2	Endogenous Explanatory Variables	567
	17.4.3	Binary Response Model with Sample Selection	570
17.5	A Tob	it Selection Equation	571
	17.5.1	Exogenous Explanatory Variables	571
	17.5.2	Endogenous Explanatory Variables	573
17.6	Estima	ting Structural Tobit Equations with Sample Selection	575
17.7	Sample	e Selection and Attrition in Linear Panel Data Models	577
	17.7.1	Fixed Effects Estimation with Unbalanced Panels	578
	17.7.2	Testing and Correcting for Sample Selection Bias	581
	17.7.3	Attrition	585
17.8	Stratifi	ed Sampling	590
	17.8.1	Standard Stratified Sampling and Variable Probability	
		Sampling	590
	17.8.2	Weighted Estimators to Account for Stratification	592
	17.8.3	Stratification Based on Exogenous Variables	596
	Proble	ms	598
18	Estima	ting Average Treatment Effects	603
18.1	Introdu	uction	603
18.2	A Cou	nterfactual Setting and the Self-Selection Problem	603
18.3	Metho	ds Assuming Ignorability of Treatment	607
	18.3.1	Regression Methods	608
	18.3.2	Methods Based on the Propensity Score	614
18.4	Instrun	mental Variables Methods	621
	18.4.1	Estimating the ATE Using IV	621

	18.4.2	Estimating the Local Average Treatment Effect by IV	633
18.5	Furthe	r Issues	636
	18.5.1	Special Considerations for Binary and Corner Solution	
		Responses	636
	18.5.2	Panel Data	637
	18.5.3	Nonbinary Treatments	638
	18.5.4	Multiple Treatments	642
	Problem	ms	642
19	Count ?	Data and Related Models	645
19.1	Why C	Count Data Models?	645
19.2	Poisson	n Regression Models with Cross Section Data	646
	19.2.1	Assumptions Used for Poisson Regression	646
	19.2.2	Consistency of the Poisson QMLE	648
	19.2.3	Asymptotic Normality of the Poisson QMLE	649
	19.2.4	Hypothesis Testing	653
	19.2.5	Specification Testing	654
19.3	Other	Count Data Regression Models	657
	19.3.1	Negative Binomial Regression Models	657
	19.3.2	Binomial Regression Models	659
19.4	Other	QMLEs in the Linear Exponential Family	660
	19.4.1	Exponential Regression Models	661
	19.4.2	Fractional Logit Regression	661
19.5	Endogeneity and Sample Selection with an Exponential Regression		
	Functi	on	663
	19.5.1	Endogeneity	663
	19.5.2	Sample Selection	666
19.6	Panel 1	Data Methods	668
	19.6.1	Pooled QMLE	668
	19.6.2	Specifying Models of Conditional Expectations with	
		Unobserved Effects	670
	19.6.3	Random Effects Methods	671
		Fixed Effects Poisson Estimation	674
	19.6.5	Relaxing the Strict Exogeneity Assumption	676
	Proble	ms	678

xvi Contents

20	Duration Analysis		685
20.1	Introduction		
20.2	Hazaro	1 Functions	686
	20.2.1	Hazard Functions without Covariates	686
	20.2.2	Hazard Functions Conditional on Time-Invariant	
		Covariates	690
	20.2.3	Hazard Functions Conditional on Time-Varying	
		Covariates	691
20.3	Analys	sis of Single-Spell Data with Time-Invariant Covariates	693
	20.3.1	Flow Sampling	694
	20.3.2	Maximum Likelihood Estimation with Censored Flow	
		Data	695
	20.3.3	Stock Sampling	700
	20.3.4	Unobserved Heterogeneity	703
20.4	Analys	sis of Grouped Duration Data	706
	20.4.1	Time-Invariant Covariates	707
	20.4.2	Time-Varying Covariates	711
	20.4.3	Unobserved Heterogeneity	713
20.5	Further Issues		714
	20.5.1	Cox's Partial Likelihood Method for the Proportional	
		Hazard Model	714
	20.5.2	Multiple-Spell Data	714
	20.5.3	Competing Risks Models	715
	Problems		715
	Refere	nces	721
	Index		737