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The Penalty-Kick Game under Incomplete Information 

Germán Coloma* 

 
Abstract 

 This paper presents a model of the penalty-kick game between a soccer goalkeeper and 
a kicker, in which there is uncertainty about the kicker’s type (and there are two possible types 
of kicker). To find a solution for this game we use the concept of Bayesian equilibrium, and we 
find that, typically, one of the kicker’s types will play a mixed strategy while the other type 
will choose a pure strategy (or, sometimes, a “restricted mixed strategy”). The model has a 
simpler version in which the players can only choose between two strategies (right and left), 
and a more complex version in which they can also choose a third strategy (the center of the 
goal). Comparing the incomplete-information Bayesian equilibria with the corresponding 
complete-information Nash equilibria, we find that in all cases the expected scoring probability 
increases (so that, on average, the goalkeeper is worse off under incomplete information). The 
three-strategy model is also useful to explain why it could be optimal for a goalkeeper never to 
choose the center of the goal (although at the same time there were some kickers who always 
chose to shoot to the center). 

JEL Classification: C72 (non-cooperative games), L83 (sports). 

Keywords: soccer penalty kicks, mixed strategies, Bayesian equilibrium, incomplete 
information. 
 

1. Introduction 

 The penalty-kick game, in which a soccer goalkeeper and a kicker face each other, has 

become an important example in the applied game-theory literature to analyze mixed-strategy 

Nash equilibria. The reason of this importance probably has to do with the fact that it is a game 

whose solution generates a clear theoretical prediction and, at the same time, it is relatively 

easy to gather data about actual outcomes of the game. Besides, this is a game in which it is not 

necessary to perform laboratory experiments, since penalty-kick situations in soccer matches 

are frequent, and soccer players are usually trained to shoot and to save penalty kicks. 

Moreover, there exist relatively large records of the different details involved in many actual 

penalty kicks shot at various soccer leagues (e.g., if they were scored or not, the side chosen by 

the goalkeeper and the kicker, the identity of the goalkeeper and the kicker, the situation of the 

match at the moment of the shot, etc.), and this helps to control for several factors that may 

influence the result of the game. 
                                                           
* CEMA University; Av. Córdoba 374, Buenos Aires, C1054AAP, Argentina. Telephone: (54-11)6314-3000; E-
mail: gcoloma@cema.edu.ar. The views and opinions expressed in this publication are those of the author and are 
not necessarily those of CEMA University. I thank Nicolás Caputo, Timothy Groseclose, Hugo Hopenhayn, John 
Riley, Connan Snider and Jorge Streb for their useful comments. I also thank the participants of two seminars held 
at CEMA University and at the University of California, Los Angeles. 
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 All the game-theoretic literature that we know about penalty kicks analyzes this 

situation as a game of complete information, i.e., as a game in which the two players know the 

characteristics of each other, and hence they know the expected payoffs that they will receive 

in the different strategy profiles of the game. There is a good reason for this assumption, which 

is the idea that goalkeepers and kickers in a professional soccer league are usually well-known 

players whose main characteristics are recognized by their opponents, and those characteristics 

are precisely the ones that define the parameters which establish the expected payoff of the 

penalty-kick game. Complete-information games, moreover, are also easier to solve and, 

perhaps more importantly, are easier to test empirically. This ease is probably the best 

explanation for the success of the penalty-kick game as a prominent example in the game-

theoretic literature. 

 Not all soccer penalty kicks, however, are shot in situations in which it is reasonable to 

assume complete information. In many cases, especially in amateur matches and in matches 

between teams that belong to different leagues, it is possible that players do not know each 

other and, therefore, are uncertain about several important characteristics that may influence 

the outcome of the game. It is also possible that the kicker (and, less usually, the goalkeeper) is 

a player who is not the “typical choice” in his team, because he is out of the match or because 

the team has decided to change him due to a poor past performance. Moreover, as penalty 

kicks are sometimes used as tie-breakers in some tournaments, and this requires that several 

players from each team shoot penalty kicks, it is possible that some of the designated kickers 

do not usually shoot penalty kicks in professional matches. This may generate a situation in 

which the goalkeeper is uncertain about some of the kicker’s relevant characteristics, changing 

the game into one with incomplete information. 

 When we have to analyze a game with incomplete information, the main solution 

concept for games with complete information (i.e., Nash equilibrium) is usually unavailable. 

Since the seminal contribution by Harsanyi (1967), however, we have an alternative concept to 

apply in these cases, which is the so-called “Bayesian equilibrium”. This equilibrium relies on 

the idea that, under incomplete information, players typically have data about the probabilities 

of their opponents’ characteristics, and this allows them to figure out which are the different 

“types” of opponents that they may face and the probability associated to each type. With that 

information we can build an equilibrium in which each player’s type plays his best response to 

their opponents’ strategies, taking into account the probability of facing each opponent’s type. 

 In this paper we will develop a model of a penalty-kick game in which there is a single 

type of goalkeeper and two types of kickers. This is consistent with several results that appear 
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in the literature, and especially with the empirical observation of Chiappori, Levitt and 

Groseclose (2002) that professional goalkeepers are basically homogeneous in their 

characteristics as penalty-kick savers, and that the main variation that we observe comes from 

the kickers’ side. In their contribution, for example, they find that the complete-information 

penalty-kick game can have two different classes of Nash equilibrium, depending on the 

scoring probability associated to shooting to the center of the goal. If that scoring probability is 

relatively low, then the equilibrium is what they call a “restricted-randomization equilibrium”, 

in which both the goalkeeper and the kicker randomize between left and right, but they never 

choose the center. If conversely, the scoring probability of shooting to the center of the goal 

(when the goalkeeper chooses one of his sides) is relatively large, then we find a “general-

randomization equilibrium” (in which both the goalkeeper and the kicker randomize among 

left, right and center). 

 In a recent paper by Jabbour and Minquet (2009), the authors allow for an additional 

strategy dimension which is the height of the kicker’s shot, and assume that shooting high to 

one of the sides (left or right) assures the kicker a certain scoring probability (because the 

goalkeeper cannot save the shot, and his only hope is that the kicker shoots outside the goal). 

In this case we also have two classes of Nash equilibrium, which depend on the scoring 

probability of shooting high: if this probability is relatively small, then the kicker will 

randomize between shooting right-low or left-low (but he will never shoot high); if it is large, 

then the kicker will strictly prefer to shoot high, and he will always choose his “natural side” 

(i.e., the goalkeeper’s right, if the kicker is right-footed, or the goalkeeper’s left, if the kicker is 

left-footed). 

 Different types of kickers also change the Nash equilibrium in the simplest versions of 

the penalty-kick game. In Palacios-Huerta (2003), for example, both the goalkeeper and the 

kicker choose between two strategies (left and right), but the equilibrium mixed strategies are 

functions of the scoring probabilities of the four possible strategy profiles. Changing one of 

these parameters, therefore, changes the equilibrium; and playing a strategy that is an 

equilibrium one for a certain set of parameters when the set of parameters is different, 

consequently, implies that the other player’s best response is a pure strategy and not a mixed 

one. This last situation, of course, is never a Nash equilibrium in a complete information 

setting, but it may well be part of a Bayesian equilibrium if we assume incomplete information 

about the kicker’s characteristics. 

 In the next section of this paper we will present a simple model in which we will allow 

for uncertainty about one of the four parameters that define the scoring probabilities of the 2x2 
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version of the penalty-kick game. This change, together with the inclusion of an additional 

parameter that defines the probability distribution of the kicker’s types, will generate a new 

game in which the kicker plays knowing the goalkeeper’s characteristics but the goalkeeper 

plays against an uncertain opponent (who may be of two different types). We will also 

compare the solution of this game with their complete-information counterparts, i.e., with the 

Nash equilibria of the games in which the goalkeeper alternatively faces each of the kicker’s 

types, knowing who his opponent is. 

 In the third section of the paper, we will develop another model in which both the 

goalkeeper and the kicker can choose among three different strategies (right, left and center), 

and we will also compare the equilibria of the game under complete and incomplete 

information. Following that, the fourth section will include a numerical example of the 

proposed models, and the fifth section will develop an empirical illustration based on data from 

previous studies about the penalty-kick game. Finally, the sixth section will be devoted to the 

conclusions of the whole paper and to some final remarks. 

 

2. A model with two strategies 

2.1. Complete information 

 Following the notation that appears in Coloma (2007), we will build a game in which 

the kicker has to choose between his natural side (the goalkeeper’s right, if the kicker is right-

footed, or the goalkeeper’s left, if the kicker is left-footed) and his opposite side (the 

goalkeeper’s left, if the kicker is right-footed, or the goalkeeper’s right, if the kicker is left-

footed). Similarly, the goalkeeper has to choose between the kicker’s natural side (NS) and the 

kicker’s opposite side (OS). The probability of scoring if both the kicker and the goalkeeper 

choose NS is PN, while the probability of scoring if both the kicker and the goalkeeper choose 

OS is PO. If the kicker chooses NS but the goalkeeper chooses OS, then the scoring probability 

is πN, while the scoring probability in the case that the kicker chooses OS and the goalkeeper 

chooses NS is πO. As this is a constant-sum game in which the kicker wins if he scores and the 

goalkeeper wins if the kicker does not score, then the kicker’s expected payoff can be 

associated to the scoring probability and the goalkeeper’s expected payoff can be associated to 

the complement of that probability. As it is a simultaneous game, then the kicker’s strategy 

space consists of two strategies (NS and OS) and the goalkeeper strategy space also consists of 

two strategies (NS and OS). 

Both the theoretical and the empirical literature agree that the scoring probabilities of 
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the penalty-kick game have to be defined so that “πN ≥ πO > PN > PO”, and these conditions 

guarantee that the Nash equilibrium of the complete-information version of the game is a 

mixed-strategy one, in which the kicker chooses NS with a certain probability n (and chooses 

OS with probability 1-n), and the goalkeeper chooses NS with a certain probability ν (and 

chooses OS with probability 1-ν). Moreover, the fact that “PN > PO” makes that, in 

equilibrium, both n and ν are greater than ½. Besides, if πN is strictly greater than πO, then it 

will also hold that, in equilibrium, “ν > n”, while if it holds that “πN = πO”, then equilibrium 

implies that “n = ν” 1. 

 One of the easiest ways of building a penalty-kick game with incomplete information is 

to assume that there is a single type of goalkeeper and two types of kickers. We will assume 

that kicker 1 is someone for whom “πN > πO”, while kicker 2 is someone for whom “πN = πO”. 

To simplify matters even further, we will assume that the values of “PN” and “PO” are the same 

for both types of kickers, and that “πO” is also the same for both types. Then our model 

depends on the standard four parameters (πN, πO, PN and PO), plus an additional parameter θ 

that represents the probability that the goalkeeper faces kicker 1 (while the probability of 

facing kicker 2 is 1-θ). The complete probability matrix is the one that appears on table 1. 

 
Table 1: Scoring-probability matrix for the two-str ategy game 

  Goalkeeper 
  NS OS 

Kicker 1 
(Prob θ) 

NS PN πN 
OS πO PO 

Kicker 2 
(Prob 1-θ) 

NS PN πO 
OS πO PO 

 

 If we first consider the case in which “πN > πO” (game 1), then the complete-

information Nash equilibrium implies that both the goalkeeper and the kicker are indifferent 

between choosing NS and OS. For this to happen, it should hold that: 

PN·n1 + πO·(1-n1) = πN·n1 + PO·(1-n1)  ⇒ O O
1

N O N O

P
n

P P

π −=
π + π − −

  (1) ; 

PN·ν1 + πN·(1-ν 1) = πO·ν 1 + PO·(1-ν 1)  ⇒ N O
1

N O N O

P

P P

π −ν =
π + π − −

  (2) . 

  Alternatively, if “πN = πO” (game 2), then the complete-information Nash equilibrium 

                                                           
1 These results were first presented by Chiappori, Levitt and Groseclose (2002). 
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solution of the game occurs when: 

PN·n2 + πO·(1-n2) = πO·n2 + PO·(1-n2)  ⇒ O O
2

O N O

P
n

2 P P

π −=
⋅π − −

   (3) ; 

PN·ν2 + πO·(1-ν 2) = πO·ν 2 + PO·(1-ν 2)  ⇒ O O
2

O N O

P

2 P P

π −ν =
⋅π − −

   (4) . 

 The equilibrium values of n1, n2, ν1 and ν2 can be compared to obtain some 

relationships that will later be useful to analyze the Bayesian equilibrium of the corresponding 

incomplete-information game. By simple observation we find that “n2 = ν2” (as we have 

already anticipated) and that “n2 > n1” (since both equilibrium expressions have the same 

numerator but n1’s denominator is greater than n2’s). We can also prove that “ν1 > ν2”, as the 

following lemma shows. 

Lemma 1: Under complete information, the Nash equilibrium solution of the penalty-kick 
game implies that “ν1 > ν2”. 

Proof: Suppose instead that “ν1 < ν2”. Then it should hold that: 

N O O O
1 2

N O N O O N O

P P

P P 2 P P

π − π −ν = < = ν
π + π − − ⋅π − −

   . 

But if this is so, then it should also hold that: 

N O O N O O O N O N O( P ) (2 P P ) ( P ) ( P P )π − ⋅ ⋅π − − < π − ⋅ π + π − −  ; 

which implies that: 

O N N O N O O N O N O N O O N O O N O(2 P ) (2 )P P (P P ) ( P ) (2 )P P (P P )π − π − π + π + + < π + π − π − π + π + +   ; 

O N N N O N O(2 P ) ( P )⋅ π − ⋅π < π + π − ⋅π   ⇒    O N N O N O( P ) ( P )π − ⋅π < π − ⋅ π      

⇒ O N N O( P ) ( ) 0π − ⋅ π − π < . 

But, as we know that “πO > PN” and “πN > πO”, then this is a contradiction. Therefore it holds 
that “ν1 > ν2”, q.e.d. 
 
 

2.2. Incomplete information 

 Let us now turn to the incomplete-information case, in which the goalkeeper does not 

know if he is facing kicker 1 or kicker 2, but the kicker knows his type (and also the unique 

goalkeeper’s type). In this case the goalkeeper will choose NS with some probability νM, 

regardless of the fact that he is facing kicker 1 or kicker 2. Given this, kicker 1 is strictly better 

off by shooting NS if it holds that “νM < ν1”, while he is strictly better off by shooting OS if it 

holds that “νM > ν1”. Correspondingly, kicker 2 is strictly better off by shooting NS if it holds 
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that “νM < ν2”, while he is strictly better off by shooting OS if it holds that “νM > ν2”. 

 Let us first assume that, as “ν1 > ν2”, the goalkeeper chooses a value for νM such that 

“ν1 > νM > ν2”. In this case kicker 1’s best response will be to play NS as a pure strategy, and 

kicker 2’s best response will be to play OS. But this could only be an equilibrium if the 

goalkeeper is indifferent between choosing NS and OS himself, for which it should hold that: 

PN·θ + πO·(1-θ) = πN·θ + PO·(1-θ)  ⇒  O O

N O N O

P

P P

π −θ =
π + π − −

  (5) ; 

and this is something that will generically occur with zero probability2. We should therefore 

look for alternative equilibria in which one of the kicker’s types plays a pure strategy and the 

other one plays a mixed strategy. Two of those equilibria exist, and we will label them “case 

A” and “case B”. 

 In case A, kicker 1 chooses NS, and both kicker 2 and the goalkeeper play mixed 

strategies. For this to occur, νM has to be equal to ν2, and therefore kicker 1 is strictly better off 

by playing NS and kicker 2 is indifferent between NS and OS. For the goalkeeper to be 

indifferent between NS and OS, however, we need that: 

PN·θ + [PN·n2 + πO·(1-n2)]·(1-θ) = πN·θ + [πO·n2 + PO·(1-n2)]·(1-θ)   

⇒ O O N N
2

O N O

( P ) ( P ) / (1 )
n

2 P P

π − − π − ⋅θ − θ=
⋅π − −

  (6) . 

 In case B, conversely, kicker 2 always chooses OS, and both kicker 1 and the 

goalkeeper play mixed strategies. For this to occur, νM has to be equal to ν1, and therefore 

kicker 2 is strictly better off by playing OS and kicker 1 is indifferent between NS and OS. For 

the goalkeeper to be indifferent between NS and OS, however, we need that: 

πO·(1-θ) + [PN·n1 + πO·(1-n1)]·θ = PO·(1-θ) + [πN·n1 + PO·(1-n1)]·θ   

⇒ O O
1

N O N O

( P ) /
n

P P

π − θ=
π + π − −

  (7) . 

 Both equilibria under cases A and B can also be seen as situations in which the 

goalkeeper is randomizing between NS and OS because he has the belief that one of the 

players is choosing a pure strategy with probability one, and the other player is playing a 

mixed strategy such as the one described by equations 6 or 7. Under case A, therefore, his 

belief is that, on average, the kicker will choose NS with a certain probability nA equal to: 

                                                           
2 This is because, as θ could be any real number between zero and one, then the probability that it is exactly equal 
to a particular real number is always zero (as there are infinite real numbers between zero and one). 
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O O N N O O N N
A 1 2

O N O O N O

( P ) ( P ) / (1 ) ( P ) ( P )
n n (1 ) n (1 )

2 P P 2 P P

π − − π − θ − θ π − − π − ⋅θ= θ⋅ + − θ ⋅ = θ + − θ =
⋅π − − ⋅π − −

 (8) ; 

while under case B his belief is that, on average, the kicker will choose NS with a certain 

probability nB equal to: 

O O O O
B 1 2

N O N O N O N O

( P ) / P
n n (1 ) n (1 ) 0

P P P P

π − θ π −= θ⋅ + − θ ⋅ = θ⋅ + − θ ⋅ =
π + π − − π + π − −

     (9) . 

 One interesting property of the Bayesian equilibria of this game under incomplete 

information is that, for a given set of parameters, only one of them exists. Indeed, the situation 

is such that, if “θ < (πO-PO)/(πN+πO-PN-PO)”, then case A equilibrium exists and case B 

equilibrium does not, while if “θ > (πO-PO)/(πN+πO-PN-PO)”, then case B equilibrium exists 

and case A equilibrium does not. These relationships are the results of the following 

propositions: 

Proposition 1: If the Bayesian equilibrium of the case A incomplete-information game exists, 
then it should hold that “θ < (πO-PO)/(πN+πO-PN-PO)”. 

Proof: Under the Bayesian equilibrium of case A, kicker 2 should play NS with a positive 
probability. Therefore it should hold that: 

O O N N
2

O N O

( P ) ( P ) / (1 )
n 0

2 P P

π − − π − ⋅θ − θ= >
⋅π − −

   . 

But if this is so, then it should also hold that: 

O O N NP ( P ) / (1 )π − > π − ⋅θ − θ       ⇒  O O N N( P ) (1 ) ( P )π − ⋅ − θ > π − ⋅θ  ; 

which implies that: 

O O N O N OP ( P P )π − > π + π − − ⋅θ         ⇒  O O

N O N O

P

P P

π −θ <
π + π − −

  q.e.d. 

 

Proposition 2: If the Bayesian equilibrium of the case B incomplete-information game exists, 
then it should hold that “θ > (πO-PO)/(πN+πO-PN-PO)”. 

Proof: Under the Bayesian equilibrium of case B, kicker 1 should play NS with a probability 
that is smaller than one. Therefore it should hold that: 

O O
1

N O N O

( P ) /
n 1

P P

π − θ= <
π + π − −

   . 

But if this is so, then it should also hold that: 

O O N O N OP ( P P )π − < π + π − − ⋅θ     ⇒  O O

N O N O

P

P P

π −θ >
π + π − −

  q.e.d. 
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 The model described in the previous paragraphs implies that, when there are two types 

of kickers and only one type of goalkeeper, and there is incomplete information, then the 

Bayesian equilibrium of the corresponding incomplete-information game generally implies that 

one of the kicker’s types will choose a pure strategy and the other type will choose a mixed 

strategy, while the goalkeeper will also choose a mixed strategy (which is the same strategy 

that he would choose if he were facing the kicker who is playing a mixed strategy). If we 

compare this Bayesian equilibrium with the Nash equilibria that would occurred if the same 

games were played under complete information, we would see that in this situation the 

goalkeeper is typically worse off and one of the kicker’s types is typically better off. 

 In order to perform the comparisons outlined in the previous paragraph, we should 

compare the expected scoring probabilities under different situations. From those comparisons 

we will see that, given the parameters that we use in our model, kicker 1 obtains a higher 

expected payoff (i.e., a higher expected scoring probability) than kicker 2 under a complete-

information Nash equilibrium. When we turn to the incomplete-information Bayesian 

equilibria analyzed, we see that the kicker who chooses a mixed strategy obtains the same 

expected payoff than under complete information, while the kicker who chooses a pure 

strategy is strictly better off. Under case B, moreover, kicker 2 is able to obtain the same 

expected payoff than kicker 1. 

 The expected scoring probability of a particular kicker is simply the average of the 

scoring probabilities implied by the strategy that he chooses, weighted by the probabilities that 

the goalkeeper “guesses” that strategy and by the probability that the goalkeeper “does not 

guess” that strategy. When a kicker is playing a mixed strategy, then the expected scoring 

probability of both NS and OS should be the same. When he is playing a pure strategy, 

conversely, his expected scoring probability is the one associated to the pure strategy that he 

chooses, that has to be greater than the expected scoring probability of the alternative strategy. 

 Under complete information, kicker 1’s expected scoring probability is equal to: 

SP1(CI) = PN·ν1 + πN·(1-ν 1) = πO·ν 1 + PO·(1-ν 1) = N O N O

N O N O

P P

P P

π ⋅π − ⋅
π + π − −

   (10) ; 

while kicker 2’s expected scoring probability is equal to: 

SP2(CI) = PN·ν2 + πO·(1-ν 2) = πO·ν 2 + PO·(1-ν 2) = 
2

O N O

O N O

P P

2 P P

π − ⋅
⋅π − −

    (11) . 
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 Under incomplete information, the expected scoring probabilities for the kickers 

depend on the case that holds. Under case A Bayesian equilibrium, kicker 2 obtains the same 

expected scoring probability that he gets under complete information, because “νA = ν2” and 

therefore he is indifferent between choosing NS and OS. Kicker 1, conversely, is strictly better 

off by choosing NS, which now gives him the following expected scoring probability: 

SP1(IA) = PN·νA + πA·(1-ν A) = O N N N N O

O N O

( P ) P ( P )

2 P P

π ⋅ π + − ⋅ π +
⋅π − −

    (12) . 

 Conversely, under case B, kicker 1 obtains the same expected scoring probability that 

he gets under complete information, because “νB = ν1” and therefore he is indifferent between 

choosing NS and OS. The one who is strictly better off is kicker 2, who is now choosing OS 

and obtaining the following expected scoring probability: 

SP2(IB) = πO·ν B + PO·(1-ν B) = O N O O O N N O N O

N O N O N O N O

( P ) P ( P ) P P

P P P P

π ⋅ π + − ⋅ π + π ⋅π − ⋅=
π + π − − π + π − −

  (13) . 

 The idea that kicker 1 is better off than kicker 2 under complete information comes 

from the fact that, under the assumptions used in this paper, both kickers obtain the same 

expected payoff in three of the four cells of the scoring-probability matrix (see table 1) while 

kicker 1 gets a higher payoff in the remaining cell (since “πN > πO”). As the goalkeeper adjusts 

his strategy to this situation, however, the relationship between the expected scoring 

probabilities that these two types of kickers induce is not so obvious when one observes the 

equilibrium values gotten at equations 10 and 11. The proof that SP1(CI) is actually greater 

than SP2(CI), therefore, is given in the following proposition. 

Proposition 3: Under complete information, the expected scoring probability for kicker 1 is 
greater than the expected scoring probability for kicker 2. 

Proof: Under complete information, the expected scoring probability for kicker 1 is the same 
choosing NS and OS. Similarly, the expected scoring probability for kicker 2 is the same 
choosing NS and OS. Therefore we can write that: 

SP1(CI) = SP1(CI/OS) = πO·ν 1 + PO·(1-ν 1) = PO + (πO-PO)·ν1  ; 

SP2(CI) = SP2(CI/OS) = πO·ν 2 + PO·(1-ν 2) = PO + (πO-PO)·ν2  . 

As we assume that “πO > PO”, and we know from lemma 1 that “ν1 > ν2”, then we also know 
that: 

PO + (πO-PO)·ν1 > PO + (πO-PO)·ν2         ⇒  SP1(CI) > SP2(CI) q.e.d. 
 
 A second comparison that we can make between expected scoring probabilities is the 

one that refers to SP1(CI) and SP1(IA), which is the theme of proposition 4. Finally, we can 



 11

also prove that “SP2(IB) > SP2(CI)”, and this is the theme of proposition 5. 

Proposition 4: Under case A Bayesian equilibrium with incomplete information, the expected 
scoring probability for kicker 1 is greater than the one that he obtains under complete 
information. 

Proof: Under complete information, the expected scoring probability for kicker 1 is the same 
choosing NS and OS. Conversely, the expected scoring probability for kicker 1 under case A 
with incomplete information is greater if he chooses NS, which is the pure strategy that he 
actually chooses in equilibrium. Therefore we can write that: 

SP1(CI) = SP1(CI/NS) = PN·ν 1 + πN·(1-ν 1) = πN – (πN-PN)·ν1  ; 

SP1(IA) = SP1(IA/NS) = PN·νA + πN·(1-νA) = πN – (πN-PN)·νA  . 

By the definition of case A Bayesian equilibrium, we know that “νA = ν2”. As we also know 
that “πN > PN” (by assumption) and “ν1 > ν2” (from lemma 1), then is should hold that: 

πN – (πN-PN)·ν1 < πN – (πN-PN)·νA         ⇒  SP1(CI) < SP1(IA) q.e.d. 
 

Proposition 5: Under case B Bayesian equilibrium with incomplete information, the expected 
scoring probability for kicker 2 is greater than the one that he obtains under complete 
information. 

Proof: Under case B with incomplete information, the expected scoring probability for kicker 
2 (SP2(IB)) is the same than the expected scoring probability for kicker 1 under complete 
information (SP1(CI)), since they are both equal to “(πN·πO-PN·PO)/(πN+πO-PN-PO)”. As we 
know (from proposition 3) that “SP1(CI) > SP2(CI)”, then this implies that “SP2(IB) > 
SP2(CI)”, q.e.d.  
 

3. A model with three strategies 

3.1. Complete information 

 Let us now assume that our two players (i.e., the goalkeeper and the kicker) can choose 

among three different strategies instead of two. The third additional strategy (besides the 

kicker’s natural side and the kicker’s opposite side) is the center of the goal (C), so the kicker 

can now choose to shoot to that place and the goalkeeper can choose to stay in that place. 

Following Coloma (2007), we will use the letter µ to denote the probability of scoring if the 

kicker chooses to shoot C and the goalkeeper chooses either the kicker’s natural side (NS) or 

the kicker’s opposite side (OS), and we will also assume that, if both the goalkeeper and the 

kicker choose C, then the scoring probability is zero3.  

Using the same assumptions derived from the theoretical and empirical literature about 

this topic, we will now assume that “πN ≥ πO > µ > PN > PO > 0”, which implies that the 

scoring probability when the kicker shoots to the center of the goal (and the goalkeeper 
                                                           
3 These assumptions, in fact, are inherited from the model originally proposed by Chiappori, Levitt and 
Groseclose (2002). 
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chooses either NS or OS) is lower than the scoring probability of choosing any of the sides 

(when the goalkeeper chooses the other side or the center) but higher than the scoring 

probability of a situation in which the ball goes to one of the sides and the goalkeeper guesses 

the shot. We will also assume that there are two types of kicker (kicker 1 and kicker 2) and a 

single type of goalkeeper. Those kickers are characterized by having different values for the 

parameter µ, such that “µ1 < µ2”. The corresponding probability matrix, therefore, is the one 

that appears on table 2. 

 
Table 2: Scoring-probability matrix for the three-strategy game 

  Goalkeeper 
  NS C OS 

Kicker 1 
(Prob θ) 

NS PN πN πN 
C µ1 0 µ1 

OS πO πO PO 
Kicker 2 

(Prob 1-θ) 
NS PN πN πN 
C µ2 0 µ 2 

OS πO πO PO 
 

Let us assume, moreover, that the values of µ1 and µ2 are such that: 

N O N O
1

N O N O

P P

P P

π ⋅ π − ⋅µ <
π + π − −

  ;  N O N O
2

N O N O

P P

P P

π ⋅ π − ⋅µ >
π + π − −

  (14) . 

 Following Chiappori, Levitt and Groseclose (2002), we know that in that case the 

corresponding complete-information Nash equilibria occur when it holds that (game 1): 

O O
1

N O N O

P
n

P P

π −=
π + π − −

  ;  c1 = 0     (15) ; 

N O
1

N O N O

P

P P

π −ν =
π + π − −

  ;  γ1 = 0     (16) ; 

and when it holds that (game 2): 

2 O O
2

N N O O 2 N O N O

( P )
n

( P ) ( P ) ( P P )

µ ⋅ π −=
π − ⋅ π − + µ ⋅ π + π − −

  ;    

         N N O O
2

N N O O 2 N O N O

( P ) ( P )
c

( P ) ( P ) ( P P )

π − ⋅ π −=
π − ⋅ π − + µ ⋅ π + π − −

 (17) ; 

N O O 2 N O
2

N N O O 2 N O N O

( P ) ( )

( P ) ( P ) ( P P )

π ⋅ π − + µ ⋅ π − πν =
π − ⋅ π − + µ ⋅ π + π − −

  ;    
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         2 N O N O N O N O
2

N N O O 2 N O N O

( P P ) P P

( P ) ( P ) ( P P )

µ ⋅ π + π − − + ⋅ − π ⋅πγ =
π − ⋅ π − + µ ⋅ π + π − −

 (18) ; 

where c1 is the probability that kicker 1 chooses C, c2 is the probability that kicker 2 chooses 

C, γ1 is the probability that the goalkeeper chooses C when he faces kicker 1, and γ2 is the 

probability that the goalkeeper chooses C when he faces kicker 2. 

 As we see, the fact that µ1 is a relatively small number induces kicker 1 not to choose C 

in any circumstance (i.e., it makes C a dominated strategy for kicker 1). Knowing that, the 

goalkeeper never chooses C, either, when facing kicker 1. Conversely, as µ2 is relatively large, 

kicker 2 is willing to choose C with some positive probability. Knowing that, the goalkeeper 

sometimes chooses C when facing kicker 2. Following the terminology of Chiappori, Levitt 

and Groseclose (2002), we will say that the Nash equilibrium of the game between kicker 1 

and the goalkeeper is a “restricted randomization equilibrium”, while the Nash equilibrium of 

the game between kicker 2 and the goalkeeper is a “general randomization equilibrium”. 

 Due to the fact that in this model we are assuming that “µ1 < µ2” (and all the other 

parameters are the same for the two types of kicker), then we will also conclude that the 

expected scoring probability under game 1 will be smaller than the expected scoring 

probability under game 2. This is in fact the result of the following lemma. 

Lemma 2: Under complete information, the expected scoring probability for kicker 1 is 
smaller than the expected scoring probability for kicker 2. 

Proof: Substituting the equilibrium values of ν1, ν2 and γ2 into the expected scoring 
probabilities of kickers 1 and 2 when they either choose NS, OS or C, we can write that: 

N O N O
1 1

N O N O

P P
SP (NS) SP (OS)

P P

π ⋅π − ⋅= =
π + π − −

  ; 

2 N O O O N N
2 2 2

N N O O 2 N O N O

[ ( P ) ( P )]
SP (NS) SP (OS) SP (C)

( P ) ( P ) ( P P )

µ ⋅ π ⋅ π − + π ⋅ π −= = =
π − ⋅ π − + µ ⋅ π + π − −

 . 

If we assumed that “SP1 > SP2”, then it should hold that: 
 

N O O N 2 N O O O N N

N O N O N N O O 2 N O N O

P P [ ( P ) ( P )]

P P ( P ) ( P ) ( P P )

π ⋅π − ⋅ µ ⋅ π ⋅ π − + π ⋅ π −>
π + π − − π − ⋅ π − + µ ⋅ π + π − −

  ⇒ 

N O O N N N O O 2 N O N O N N O O( P P ) ( P ) ( P ) ( P P ) ( P ) ( P )π ⋅ π − ⋅ ⋅ π − ⋅ π − > µ ⋅ π + π − − ⋅ π − ⋅ π −  ⇒ 

N O N O
2

N O N O

P P

P P

π ⋅π − ⋅µ <
π + π − −

 ; 

but this is a contradiction with the assumption stated in equation 14. Therefore it holds that 
“SP1 < SP2”, q.e.d. 
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3.2. Incomplete information 

 Let us now turn to an incomplete-information case, in which the goalkeeper does not 

know if he is facing kicker 1 or kicker 2, but the kicker knows his type (and also the unique 

goalkeeper’s type). Let us assume that there is a probability θ that the goalkeeper faces kicker 

1, and a probability 1-θ that he faces kicker 2. In that case, as we did for the two-strategy 

model, we have to look for a Bayesian equilibrium in which the goalkeeper chooses a single 

strategy and each of the possible kickers chooses his own strategy. 

 One possible Bayesian equilibrium for this situation (case A) occurs when the 

goalkeeper chooses the same strategy that he would choose in a complete-information setting 

in which he were facing kicker 1 (i.e., νA > 0, γA = 0). Given that, kicker 1 is indifferent 

between choosing NS and OS, and kicker 2 is strictly better-off by choosing C, provided that 

the goalkeeper never chooses C in his equilibrium strategy. All these results can be stated as 

follows: 

O O
1

N O N O

P
n

P P

π −=
π + π − −

  ;  c1 = 0     (19) ; 

n2 = 0     ;  c2 = 1     (20) ; 

N O
A

N O N O

P

P P

π −ν =
π + π − −

  ;  γA = 0     (21) . 

 Another possible Bayesian equilibrium (case B) occurs when the goalkeeper chooses 

the same strategy that he would choose in a complete-information setting in which he were 

facing kicker 2 (i.e., νB > 0, γB > 0). Given that, kicker 2 is indifferent between choosing NS, 

OS or C, and kicker 1 is indifferent between choosing NS or OS4. This implies that: 

N O O 2 N O
B

N N O O 2 N O N O

( P ) ( )

( P ) ( P ) ( P P )

π ⋅ π − + µ ⋅ π − πν =
π − ⋅ π − + µ ⋅ π + π − −

  ;    

         2 N O N O N O N O
B

N N O O 2 N O N O

( P P ) P P

( P ) ( P ) ( P P )

µ ⋅ π + π − − + ⋅ − π ⋅ πγ =
π − ⋅ π − + µ ⋅ π + π − −

 (22) ; 

2 N O O O N N
1 1

N N O O 2 N O N O

[ ( P ) ( P )]
SP (NS) SP (OS)

( P ) ( P ) ( P P )

µ ⋅ π ⋅ π − + π ⋅ π −= =
π − ⋅ π − + µ ⋅ π + π − −

    (23) ; 

                                                           
4 This last feature has to do with the fact that, in our model, both kickers have the same values for “πN”, “ πO”, 
“PN” and “PO”. If there were some differences in these values for the two types of kickers, then kicker 1 might 
strictly prefer either NS or OS. 
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2 N O O O O N
2 2 2

N N O O 2 N O N O

[ ( P ) ( P )]
SP (NS) SP (OS) SP (C)

( P ) ( P ) ( P P )

µ ⋅ π ⋅ π − + π ⋅ π −= = =
π − ⋅ π − + µ ⋅ π + π − −

  (24) . 

 The values for n1 and n2 in this Bayesian equilibrium, however, are indeterminate, since 

what we need is that, on average, they equate the value that n2 has in the corresponding 

complete-information Nash equilibrium. The equilibrium value for c2, conversely, is a function 

of the probability parameter θ. Indeed: 

2 O O
1 2

N N O O 2 N O N O

( P )
n (1 ) n

( P ) ( P ) ( P P )

µ ⋅ π −θ⋅ + − θ ⋅ =
π − ⋅ π − + µ ⋅ π + π − −

    (25) ; 

N N O O
2

N N O O 2 N O N O

( P ) ( P )
(1 ) c

( P ) ( P ) ( P P )

π − ⋅ π −− θ ⋅ =
π − ⋅ π − + µ ⋅ π + π − −

   ⇒  

  N N O O
2

N N O O 2 N O N O

( P ) ( P )
c

(1 ) [( P ) ( P ) ( P P )]

π − ⋅ π −=
− θ ⋅ π − ⋅ π − + µ ⋅ π + π − −

   (26) . 

  For these strategy profiles to be Bayesian equilibria, however, some additional 

conditions have to be fulfilled. Under case A, for example, we need that the goalkeeper be 

indifferent between choosing NS and OS, and strictly better-off by choosing any of those 

strategies than by choosing C. Let us now define the corresponding expected scoring 

probabilities induced by the three possible goalkeeper strategies (NS, OS and C) in the 

following way: 

N O N O
G 1 N 1 O 2 2

N O N O

( P P )
SP (NS) [n P (1 n ) ] (1 ) (1 )

P P

θ⋅ π ⋅π − ⋅= θ⋅ ⋅ + − ⋅ π + − θ ⋅µ = + − θ ⋅µ
π + π − −

  (27) ; 

N O N O
G 1 N 1 O 2 2

N O N O

( P P )
SP (OS) [n (1 n ) P ] (1 ) (1 )

P P

θ⋅ π ⋅π − ⋅= θ⋅ ⋅π + − ⋅ + − θ ⋅µ = + − θ ⋅µ
π + π − −

  (28) ; 

N O N O O N
G 1 N 1 O

N O N O

(2 P P )
SP (C) [n (1 n ) ] (1 ) 0

P P

θ⋅ ⋅π ⋅π − π ⋅ − π ⋅= θ⋅ ⋅ π + − ⋅π + − θ ⋅ =
π + π − −

  (29) . 

 As we see, the equilibrium values found for n1 and c2 imply that in this case SPG(NS) 

and SPG(OS) are equal, so the goalkeeper is actually indifferent between choosing NS and OS. 

We will also need that, in this equilibrium, SPG(NS) and SPG(OS) are greater than SPG(C), but 

this only occurs for a set of values of the parameter θ, as the following proposition shows. 

Proposition 6: If the Bayesian equilibrium of the case A incomplete-information game exists, 
then it should hold that “θ > µ2·(πN+πO-PN-PO)/[(πN-PN)·(πO-PO)+µ2·(πN+πO-PN-PO)] ”. 

Proof: Under the Bayesian equilibrium of case A, the goalkeeper should strictly prefer to play 
both NS and OS with a positive probability instead of C. Therefore it should hold that: 
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G G GSP (C) SP (NS) SP (OS)> =  ⇒

 N O N O O N N O N O
2

N O N O N O N O

(2 P P ) ( P P )
(1 )

P P P P

θ⋅ ⋅π ⋅π − π ⋅ − π ⋅ θ⋅ π ⋅π − ⋅> + − θ ⋅µ
π + π − − π + π − −

  ⇒ 

2 N O N O

N N O O 2 N O N O

( P P )

( P ) ( P ) ( P P )

µ ⋅ π + π − −θ >
π − ⋅ π − + µ ⋅ π + π − −

  q.e.d. 

 
 On the other hand, for a case B equilibrium to exist, it is important that n1, n2 and c2 

take some values that are not inconsistent with their status as probability values. In particular, 

we need that c2 is not greater than one, and this also occurs for a particular set of values of the 

parameter θ. This is the theme of proposition 7. 

Proposition 7: If the Bayesian equilibrium of the case B incomplete-information game exists, 
then it should hold that “θ < µ2·(πN+πO-PN-PO)/[(πN-PN)·(πO-PO)+µ2·(πN+πO-PN-PO)] ”. 

Proof: Under the Bayesian equilibrium of case B, kicker 2 should choose C with a certain 
probability (c2) that guarantees that the goalkeeper is indifferent between choosing NS, OS and 
C. But this can only be feasible if the required equilibrium value for c2 is less than one. 
Therefore it should hold that: 
 

N N O O
2

N N O O 2 N O N O

( P ) ( P )
c 1

(1 ) [( P ) ( P ) ( P P )]

π − ⋅ π −= <
− θ ⋅ π − ⋅ π − + µ ⋅ π + π − −

  ⇒

 N N O O

N N O O 2 N O N O

( P ) ( P )
1

( P ) ( P ) ( P P )

π − ⋅ π −− θ >
π − ⋅ π − + µ ⋅ π + π − −

  ⇒  

  2 N O N O

N N O O 2 N O N O

( P P )

( P ) ( P ) ( P P )

µ ⋅ π + π − −θ <
π − ⋅ π − + µ ⋅ π + π − −

   q.e.d. 

 
 Note that propositions 6 and 7 imply that case A and case B equilibria cannot exist at 

the same time. Indeed, for any particular value of θ, only one of these equilibria can occur, 

being case A equilibrium the chosen one when θ is relatively large, and case B equilibrium the 

chosen one when θ is relatively small. 

Another set of restrictions on parameter θ can be found if we analyze the possible 

values of n1 and n2 under a case B equilibrium. Recall that, from equation 26, we know that n1 

and n2 have to be such that, on average, they have a value equal to µ2·(πO- PO)/[(πN-PN)·(πO-

PO)+µ2·(πN+πO-PN-PO)] . But the possible combinations of n1 and n2 that satisfy that equation 

are also limited by the conditions that “0 ≤ n1 ≤ 1”, and “0 ≤ n2 ≤ 1-c2”. In the particular cases 

where one of these constraints holds as an equality, then the other strategy coefficient adopts a 
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determinate value. But this value is also constrained by some restrictions, and this imposes a 

limit on the possible value for the parameter θ. In particular: 

n1 = 0      ⇒ 2 O O
2 2

N N O O 2 N O N O

( P )
n 1 c

(1 ) [( P ) ( P ) ( P P )]

µ ⋅ π −= < −
− θ ⋅ π − ⋅ π − + µ ⋅ π + π − −

 ⇒ 

2 O O 2 N O N O N N O O

N N O O 2 N O N O N N O O 2 N O N O

( P ) (1 ) ( P P ) ( P )( P )

(1 )[( P )( P ) ( P P )] (1 )[( P )( P ) ( P P )]

µ π − − θ µ π + π − − − θ π − π −<
− θ π − π − + µ π + π − − − θ π − π − + µ π + π − −

 

⇒ N N O O 2 N O N O 2 N N[( P ) ( P ) ( P P )] ( P )θ⋅ π − ⋅ π − + µ ⋅ π + π − − < µ ⋅ π −  

⇒ 2 N N

N N O O 2 N O N O

( P )

( P ) ( P ) ( P P )

µ ⋅ π −θ <
π − ⋅ π − + µ ⋅ π + π − −

  (30) ; 

n1 = 1      ⇒ 2 O O N N O O 2 N O N O
2

N N O O 2 N O N O

( P ) [( P ) ( P ) ( P P )]
n 0

(1 ) [( P ) ( P ) ( P P )]

µ ⋅ π − − θ⋅ π − ⋅ π − + µ ⋅ π + π − −= >
− θ ⋅ π − ⋅ π − + µ ⋅ π + π − −

  

⇒ 2 O O

N N O O 2 N O N O

( P )

( P ) ( P ) ( P P )

µ ⋅ π −θ <
π − ⋅ π − + µ ⋅ π + π − −

  (31) ; 

n2 = 0     ⇒ 2 O O
1

N N O O 2 N O N O

( P )
n 1

[( P ) ( P ) ( P P )]

µ ⋅ π −= <
θ⋅ π − ⋅ π − + µ ⋅ π + π − −

   

⇒ 2 O O

N N O O 2 N O N O

( P )

( P ) ( P ) ( P P )

µ ⋅ π −θ >
π − ⋅ π − + µ ⋅ π + π − −

  (32) ; 

n2 = 1-c2   ⇒    N N O O 2 N O N O 2 N N
1

N N O O 2 N O N O

[( P ) ( P ) ( P P )] ( P )
n 0

[( P ) ( P ) ( P P )]

θ⋅ π − ⋅ π − + µ ⋅ π + π − − − µ ⋅ π −= >
θ⋅ π − ⋅ π − + µ ⋅ π + π − −

 

   ⇒ 2 N N

N N O O 2 N O N O

( P )

( P ) ( P ) ( P P )

µ ⋅ π −θ >
π − ⋅ π − + µ ⋅ π + π − −

  (33) . 

 Although in our case B model all these restrictions apply to particular situations where 

either n1 or n2 adopt extreme values, those situations are actually the only ones that are feasible 

if the parameters πN , πO , PN and PO are not exactly the same for kickers 1 and 2. Imagine, for 

example, that one of these parameters is slightly larger or smaller for kicker 1, and that this 

difference induces that kicker to strictly prefer NS when the goalkeeper responds optimally to 

kicker 2. In that case, “n1 = 1” (if it holds that “θ < µ2·(πO- PO)/[(πN-PN)·(πO-PO)+µ2·(πN+πO-

PN-PO)] ”), or else “n2 = 0” (if it holds that “θ > µ2·(πO- PO)/[(πN-PN)·(πO-PO)+µ2·(πN+πO-PN-

PO)] ”). Conversely, if the parameter values are such that kicker 1 strictly prefers OS when the 
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goalkeeper responds optimally to kicker 2, then the only possible case B equilibria occur when 

“n1 = 0” (if it holds that “θ < µ2·(πN-PN)/[(πN-PN)·(πO-PO)+µ2·(πN+πO-PN-PO)] ”), or else when 

“n2 = 1-c2” (if it holds that “θ > µ2·(πN-PN)/[(πN-PN)·(πO-PO)+µ2·(πN+πO-PN-PO)] ”)5. 

 An additional group of results that we can find using this incomplete-information 

setting has to do with the idea that the expected scoring probabilities are higher under 

incomplete information than under complete information. This is particularly the case for 

kicker 1 under case B, since we have found (equation 23) that in this circumstance he obtains 

the same expected scoring probability than kicker 2 under complete information, and by lemma 

2 we know that such probability is greater than the one that kicker 1 obtains under complete 

information. Another case in which a kicker’s type obtains a strictly higher scoring probability 

with incomplete information is the one of kicker 2 under case A, as is proved in lemma 3. 

Lemma 3: Under case A Bayesian equilibrium with incomplete information, the expected 
scoring probability for kicker 2 is greater than the one that he obtains under complete 
information. 

Proof: Suppose instead that “SP2(CI) > SP2(IA)”. Then it should hold that: 

)IA(SP
)PP()P()P(

)]P()P([
)CI(SP 22

ONON2OONN

NNOOON2
2 =µ>

−−π+π⋅µ+−π⋅−π
−π⋅π+−π⋅π⋅µ=    . 

But if this is so, then it should also hold that: 

2
2 N O N O 2 N O N O( P P ) ( P P )µ ⋅ π ⋅ π − ⋅ > µ ⋅ π + π − −  ⇒ N O N O

2
N O N O

P P

P P

π ⋅ π − ⋅µ <
π + π − −

 . 

As we know from equation 14 that this last result is not true, then this is a contradiction. 
Therefore, “SP2(CI) < SP2(IA)”, q.e.d. 
 
 With all these results at hand, it is straightforward to prove that the average expected 

scoring probability is always higher under incomplete information, provided that “0 < θ < 1”. 

That is the theme of proposition 8. 

Proposition 8: If “0 < θ < 1”, then the average expected scoring probability is greater under 
incomplete information than under complete information. 

Proof: Recall that the expected scoring probabilities for the two types of kickers under the 
different analyzed cases are the following: 

ONON

ONON
11 PP

PP
)IA(SP)CI(SP

−−π+π
⋅−π⋅π==  ;  22 )IA(SP µ=   ; 

)PP()P()P(

)]P()P([
)IB(SP)IB(SP)CI(SP

ONON2OONN

NNOOON2
122 −−π+π⋅µ+−π⋅−π

−π⋅π+−π⋅π⋅µ===  . 

                                                           
5 In fact, these conditions are additional to the general requirement that “θ < µ2·(πN+πO-PN-PO)/[(πN-PN)·(πO-
PO)+µ2·(πN+πO-PN-PO)] ”, which is the one that guarantees that a case B Bayesian equilibrium exists. 
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Let us now define the average expected scoring probabilities in the following way: 

)PP()P()P(

)]P()P([
)1(

PP

PP
)CI(ASP

ONON2OONN

NNOOON2

ONON

ONON

−−π+π⋅µ+−π⋅−π
−π⋅π+−π⋅π⋅µ⋅θ−+

−−π+π
⋅−π⋅π⋅θ=  ; 

2
ONON

ONON )1(
PP

PP
)IA(ASP µ⋅θ−+

−−π+π
⋅−π⋅π⋅θ=   ; 

)PP()P()P(

)]P()P([
)IB(ASP

ONON2OONN

NNOOON2

−−π+π⋅µ+−π⋅−π
−π⋅π+−π⋅π⋅µ=   . 

As we know (from lemma 3) that “SP2(IA) > SP2(CI)”, then we also know that “ASP(IA) > 
ASP(CI)”. And as we know (from lemma 2) that “SP2(CI) = SP1(IB) > SP1(CI)”, then we also 
know that “ASP(IB) > ASP(CI)”. Combining both results, it holds that, for any value of θ such 
that “0 < θ < 1”, it is true that “ASP(II) > ASP(CI)”, q.e.d. 
 

4. Numerical example 

4.1. Two-strategy model 

 The results that we have obtained in section 2 can be illustrated for a particular set of 

parameters. Using the estimates that appear in Coloma (2007), we will assume that “πN = 

0.98”, “ πO = 0.94”, “ PN = 0.68” and “PO = 0.48”. This implies that, under complete 

information, the equilibrium values for n1, n2, ν1 and ν2 are the following: 

1

0.94 0.48
n 0.6053

0.98 0.94 0.68 0.48

−= =
+ − −

  ;  1

0.98 0.48
0.6579

0.98 0.94 0.68 0.48

−ν = =
+ − −

  ; 

2 2

0.94 0.48
n 0.6389

2 0.94 0.68 0.48

−= ν = =
⋅ − −

 ; 

which is therefore an example of the theoretical result that we obtained, which states that “ν1 > 

ν2 = n2 > n1”. Besides, the corresponding expected scoring probabilities under this complete-

information situation are the following: 

1

0.98 0.94 0.68 0.48
SP (CI) 0.7826

0.98 0.94 0.68 0.48

⋅ − ⋅= =
+ − −

  ;       
2

2

0.94 0.68 0.48
SP (CI) 0.7739

2 0.94 0.68 0.48

− ⋅= =
⋅ − −

  . 

 If we now turn to the incomplete-information situation, we have two possible cases 

depending on the fact that θ is either greater than or smaller than 0.6053. When “θ < 0.6053” 

(case A), it will hold that: 

1n 1=   ;  A 2 0.6389ν = ν =   ;   2

0.4167
n 0.6389

1

⋅θ= −
− θ

 ; 

whereas, if “θ > 0.6053” (case B), it will hold that: 
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2n 0=   ;  B 1 0.6579ν = ν =   ;    1

0.6053
n =

θ
 . 

 As we already know from the results obtained in section 2, “SP2(IA) = SP2(CI) = 

0.7739” and “SP2(IB) = SP1(IB) = SP1(CI) = 0.7826”. By applying the formula that we have 

derived for equation 12, we can also find that: 

1

0.94 (0.98 0.68) 0.68 (0.98 0.48)
SP (IA) 0.7883

2 0.94 0.68 0.48

⋅ + − ⋅ += =
⋅ − −

  . 

 

Figure 1: Equilibrium strategies under incomplete information (two-strategy model) 
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 The incomplete-information case produces, as we have already seen, some results that 

depend on the value of θ, that is, on the proportion of kicker 1’s that we have in the population 

under analysis. Figure 1 depicts the values of n1, n2 and νM that we obtain as equilibrium values 

for all possible levels of θ, and in that figure we can see that n1 tends to its complete-

information level when θ tends to one, while n2 tends to its complete-information level when θ 

tends to zero. 

 Correspondingly, figure 2 depicts the average scoring probability under complete and 

incomplete information for all possible levels of θ. In it we see that, unless “θ = 0” or “θ = 1”, 

the average scoring probability is higher under incomplete information. We also see that, when 
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θ increases, the average scoring probability under complete information also increases (since 

“SP1(CI) > SP2(CI)”, and the average scoring probability is “θ·SP1(CI) + (1-θ)·SP2(CI)”). The 

average scoring probability is also increasing in θ under incomplete information, but it reaches 

a maximum of 0.7826 when “θ = 0.6053”, and keeps that level for all values of θ that exceed 

that number. 

 
Figure 2: Average scoring probabilities (two-strategy model) 
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4.2. Three-strategy model 

 If we now turn to the three-strategy model developed in section 3, we can also illustrate 

its results using the set of parameters that we applied in the previous sub-section of this paper. 

We will additionally need a value for µ2, which can also be the one estimated in Coloma 

(2007). That value is “µ2 = 0.88”, which, together with the values reported in sub-section 4.1, 

implies that under complete information:   

1

0.94 0.48
n 0.6053

0.98 0.94 0.68 0.48

−= =
+ − −

  ;  1

0.98 0.48
0.6579

0.98 0.94 0.68 0.48

−ν = =
+ − −

  ; 

5017.0
)48.068.094.098.0(88.0)48.094.0()68.098.0(

)48.094.0(88.0
n2 =

−−+⋅+−⋅−
−⋅=  ; 
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1710.0
)48.068.094.098.0(88.0)48.094.0()68.098.0(

)48.094.0()68.098.0(
c2 =

−−+⋅+−⋅−
−⋅−=   ; 

6024.0
)48.068.094.098.0(88.0)48.094.0()68.098.0(

)94.098.0(88.0)48.094.0(98.0
2 =

−−+⋅+−⋅−
−⋅+−⋅=ν  ; 

0917.0
)48.068.094.098.0(88.0)48.094.0()68.098.0(

94.098.048.068.0)48.068.094.098.0(88.0
2 =

−−+⋅+−⋅−
⋅−⋅+−−+⋅=γ  

 Given this, we can now calculate the expected scoring probabilities for the three-

strategy complete-information games, which are the following: 

7826.0
48.068.094.098.0

48.068.094.098.0
)CI(SP1 =

−−+
⋅−⋅=   ; 

7993.0
)48.068.094.098.0(88.0)48.094.0()68.098.0(

)]68.098.0(94.0)48.094.0(98.0[88.0
)CI(SP2 =

−−+⋅+−⋅−
−⋅+−⋅⋅=  . 

As we see, these results fulfill the rule found in section 3, under which “SP2(CI) > SP1(CI)”. 

 If we now turn to the incomplete-information situation, we have two possible cases 

depending on the fact that θ is either greater than or less than 0.82895. When “θ > 0.82895” 

(case A) 6, it will hold that: 

1

0.94 0.48
n 0.6053

0.98 0.94 0.68 0.48

−= =
+ − −

  ;  A

0.98 0.48
0.6579

0.98 0.94 0.68 0.48

−ν = =
+ − −

  ; 

2n 0=  ;    2c 1=  ;    A 0γ =  ; 

whereas, if “θ < 0.82895” (case B), it will hold that: 

2

(0.98 0.68) (0.94 0.48) 0.1710
c

(1 ) (0.98 0.68) (0.94 0.48) 0.88 (0.98 0.94 0.68 0.48) 1

− ⋅ −= =
− θ ⋅ − ⋅ − + ⋅ + − − − θ

 ; 

B 0.6024ν =   ;   B 0.0917γ =  ;  1 2n (1 ) n 0.5017θ⋅ + − θ ⋅ =  . 

 Besides, as we know from the results obtained in section 3, “SP1(IA) = SP1(CI) = 

0.7826”, “ SP1(IB) = SP2(IB) = SP2(CI) = 0.7993” and “SP2(IA) = µ2 = 0.88”. This implies that 

the average expected scoring probabilities under complete information and under the two 

incomplete-information cases are the following: 

ASP(CI) 0.7826 (1 ) 0.7993= θ ⋅ + − θ ⋅      ;   ASP(IA) 0.7826 (1 ) 0.88= θ⋅ + − θ ⋅  ; 

                                                           
6 This number comes from substituting the values of πN, πO, PN, PO and µ2 into the formula found in propositions 6 
and 7, which are the ones that define the range of values of θ for which case A and case B equilibria can occur.  
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ASP(IB) 0.7993=   . 

As we can see from the formulae, once again the incomplete-information cases produce 

some results that depend on the value of θ, that is, on the proportion of type 1 kickers that we 

have in the population under analysis. Figure 3 depicts the values of c2 and γM that we obtain as 

equilibrium values for all possible levels of θ, and in that figure we can see that c2 tends to its 

complete-information level when θ tends to zero, and becomes equal to one if “θ ≥ 0.82895”. 

The value of γM, correspondingly, jumps from a value equal to the strategy chosen for a 

complete-information situation where the goalkeeper faces kicker 2 (γM = 0.0917) to a value 

equal to zero, and this also occurs when “θ ≥ 0.82895”. 

 

Figure 3: Equilibrium strategies under incomplete information (three-strategy model) 
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 Correspondingly, figure 4 depicts the average scoring probability under complete and 

incomplete information for all possible levels of θ. In it we see that, unless “θ = 0” or “θ = 1”, 

the average scoring probability is higher under incomplete information. We also see that, when 

θ increases, the average scoring probability under complete information decreases (since 

“SP1(CI) < SP2(CI)”, and the average scoring probability is equal to “θ·SP1(CI) + (1-

θ)·SP2(CI)”). The average scoring probability is also decreasing in θ under incomplete 
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information if “θ > 0.82895”, but for the levels of θ that are below that threshold it is constant 

and equal to the maximum possible average scoring probability (i.e., “ASP(II) = 0.7993”). 

 

Figure 4: Average scoring probabilities (three-strategy model) 
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5. Empirical illustration 

 The numerical examples that we have built in the previous section, although based on 

parameter values estimated using real data, are not a true empirical illustration of our 

incomplete-information models, since they just try to find out the equilibrium values for those 

models under certain assumptions. In this section we will get closer to an empirical application 

of the models using some data reported in four empirical studies about the penalty-kick game, 

and we will try to see if the use of an incomplete-information approach can be helpful to 

improve the results of an equilibrium estimation. The exercise, however, will fall short of an 

actual empirical estimation of an incomplete-information model, basically because we will not 

use the original data which are the source of the empirical studies, but only some descriptive 

statistics that we will take as estimates of the underlying strategies and parameters of the 

model. The aim of this illustration, therefore, will not be to test an incomplete-information 
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model but simply to show a possible approach to the problem of estimation of such a model in 

four particular situations. 

 The empirical studies that we will use as a source for our illustrations will be the 

already cited papers by Chiappori, Levitt and Groseclose (2002) and by Palacios-Huerta 

(2003), plus two more recent studies by Bar-Eli et al. (2007) and by Baumann, Friehe and 

Wedow (2011). The first two of those studies give strong evidence in favor of the 

reasonableness of the complete-information Nash equilibrium as a solution for the penalty-kick 

game7, while the third one questions that evidence and points out a possible problem 

concerning the relatively small frequency that goalkeepers choose to stay in the center of the 

goal. The study by Baumann, Friehe and Wedow, finally, does not test the complete-

information model but presupposes its validity, and tests the hypothesis that an increase in the 

quality of the kickers induces them to choose their natural side more often. 

 
Table 3. Information from penalty-kick studies 

Concept CLG (2002) PH (2003) BEA (2007) BFW (2011) 
Average n 0,4488 0,4980 0,3917 0,4374 
Average c 0,1721 0,0750 0,2867 0,1582 
Average ν 0,5665 0,5310 0,4441 0,5435 
Average γ 0,0240 0,0170 0,0629 0,0110 
Implied πN 0,9437 0,9648 1,0000 1,0000 
Implied πO 0,8992 0,9443 1,0000 1,0000 
Implied µ 0,8418 0,8820 0,9304 0,6537 
Implied PN 0,6320 0,7120 0,7460 0,4922 
Implied PO 0,4400 0,5520 0,7040 0,3569 
Average Scoring Rate 0,7490 0,8010 0,8530 0,7357 
 

 On table 3 we present a few data gathered from these four studies, which have been 

“translated” into our terminology of strategies (n, c, ν, γ) and scoring probabilities (πN, πO, µ, 

PN, PO)8. Of course, the numbers reported are not necessarily the actual strategies and 

probabilities but the average frequencies with which the players have chosen the different 

options (NS, OS and C) and the average scoring rates that occurred under the different 

combinations of those options. We also report the aggregate average scoring rates that 

correspond to the samples used in each of the studies. As the reader can imagine, “CLG” 

                                                           
7 In another paper that we already cited in section 4  (Coloma, 2007), we have developed additional tests to check 
for the validity of the complete-information Nash equilibrium concept, but the data used are the same than the 
ones used by Chiappori, Levitt and Groseclose (2002). 
8 In three of the four cases the calculations were relatively easy, because the studies reported either the actual 
frequencies and rates or the actual number of shots needed to calculate those rates. For the case of the study by 
Baumann, Friehe and Wedow, conversely, we had to apply a very indirect method to detect the implied scoring 
rates in each of the strategy profiles.  
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means Chiappori, Levitt and Groseclose, “PH” means Palacios-Huerta, “BEA” means Bar-Eli 

et al., and “BFW” means Baumann, Friehe and Wedow. 

 Using the scoring rates that appear on table 3, it is relatively simple to calculate which 

would be the average Nash equilibrium strategies that players would have chosen if they had 

played in a complete-information environment. These are the ones predicted by equations 15, 

16, 17 and 18, depending on the fulfillment of equation 14. To check this last condition it is 

necessary to calculate what we can call a “critical µ”, that would be the maximum level of µ 

under which we can expect the occurrence of a restricted-randomization equilibrium. The first 

rows of table 4 show those complete-information equilibrium strategies implied by the four 

studies under analysis, together with the corresponding critical µ and the implied average 

scoring probability (ASP). 

 
Table 4. Equilibrium results under complete and incomplete information 

Concept CLG (2002) PH (2003) BEA (2007) BFW (2011) 
Complete information     
Critical µ 0,7400 0,8030 0,8633 0,7163 
Implied n 0,4881 0,5178 0,4692 0,5588 
Implied c 0,1807 0,1484 0,1281 0,0000 
Implied ν 0,5943 0,5936 0,5043 0,5588 
Implied γ 0,0991 0,0762 0,0629 0,0000 
Implied ASP 0,7584 0,8148 0,8719 0,7163 
Incomplete information     
Estimated θ 0,9367 0,9725 0,8347 0,8418 
Implied n1 0,4791 0,5121 0,4692 0,5196 
Implied n2 0,0000 0,0000 0,0000 0,0000 
Implied c1 0,1162 0,0489 0,1455 0,0000 
Implied c2 1,0000 1,0000 1,0000 1,0000 
Implied ν 0,6391 0,6296 0,5043 0,5588 
Implied γ 0,0240 0,0170 0,0629 0,0000 
Implied ASP 0,7578 0,8102 0,8719 0,7064 
 

 If we now compare the complete-information equilibrium results from table 4 with the 

information reported on table 3, we can see some striking similarities but also some important 

differences, which may cast some doubts about the ability of the complete-information model 

to explain the players’ behavior. The implied average scoring probabilities, for example, are 

very similar to the actual average scoring rates in the four cases. The implied values of c for 

the CLG study, of n for the PH study, and of γ for the BEA and BFW studies are also 

extremely similar to the average values reported on table 3. Conversely, we can see that the 

calculated complete-information equilibrium predicts implied values for the parameters that are 
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very different to the reported average values for the cases of the parameters n and c in both the 

BEA and BFW studies, for the parameters c, ν and γ in the PH study, and also for the 

parameter γ in the CLG study. Moreover, the complete-information model predicts that the 

equilibrium in the BFW study should be one of restricted randomization (since the critical µ is 

larger than the parameter µ implied by the data), but we nevertheless observe a relatively large 

fraction of kicks that were actually shot to the center of the goal by the kickers in that sample. 

 Some of these divergences can be partially explained using a few easy incomplete-

information assumptions like the ones made to calculate a new set of implied parameters 

(which are the ones that appear in the last rows of table 4). For the CLG case, for example, we 

have assumed that kickers are actually of two types: type-2 kickers strictly prefer to shoot to 

the center of the goal, while type-1 kickers choose a mixed strategy that combines NS, OS and 

C with positive probability. To match the data on the observed choices of NS, we had to 

assume a certain distribution of the types (the “estimated θ”), and based on that we also 

estimated a certain value for the implied parameter c1. The parameter γ, conversely, was 

supposed to be equal to the observed average value for that parameter, while ν was estimated 

as the value that made type-1 kickers indifferent between choosing NS, OS and C. 

 The same methodology for defining the two types of kickers were used to match the 

data reported in the PH and BEA studies. For the BFW study, however, we had to use a 

different approach to conciliate the prediction of the complete-information model (that on 

average it was not optimal for the kickers to choose C) with the data that show that 15.82% of 

the kicks were actually shot to the center of the goal. In order to solve that puzzle, we assumed 

that in this case type-1 kickers were players who never chose C and type-2 kickers were 

players who always shot to the center of the goal9. These assumptions allowed us to estimate a 

certain value for θ, but obliged us to assume that the implied value for γ was equal to zero. This 

last feature does not exactly match the data (since the average γ in the BFW study is 0.011), 

but it helps us to explain how it is possible that there is such a large fraction of kickers that 

choose C in equilibrium while almost no goalkeeper is willing to stay in the center of the goal. 

                

6. Final remarks 

 The main conclusions of this paper have to do with the idea that, in some cases, the 

outcomes of a situation in which a soccer goalkeeper faces a kicker at a penalty kick can be 

                                                           
9 Of course, this implies assuming that type-2 kickers are players whose scoring probabilities when shooting NS 
or OS are completely different (lower) than the ones associated to type-1 kickers. This lower scoring probabilities 
are never observed, since type-2 kickers always choose C instead of NS or OS. 
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better explained as the result of an incomplete-information game. In those cases, the relevant 

solution concept is no longer the mixed-strategy Nash equilibrium of the game but the 

corresponding Bayesian equilibrium, since at least one of the players (e.g., the goalkeeper) is 

facing uncertainty about his opponent’s type. 

 In the simplified models that we presented, we see that, under incomplete information, 

the typical situation is that at least one of the player’s types (i.e., one of the kickers) chooses a 

pure strategy instead of a mixed strategy. This choice, which is almost impossible in 

equilibrium under complete information, arises because that type of kicker is actually 

responding to a strategy that the goalkeeper has designed for a different type of opponent. 

Being unable to distinguish among the different types, the goalkeeper has to play the same 

strategy against every opponent, and this is why some types of kickers may prefer a pure 

strategy. When we mix the strategies played by the different kickers, however, we end up with 

a sort of “average kicker strategy” with different probabilities for the available pure strategies, 

and this average strategy has to be such that the goalkeeper is indifferent between playing the 

pure strategies that he mixes when he chooses his own best response to the “expected kicker”. 

In the three-strategy model presented in section 3, we also have cases in which one of 

the kicker’s types plays a “restricted mixed strategy” (e.g., one that randomizes between NS 

and OS) while the other type plays a “full mixed strategy” (i.e., one that randomizes among 

NS, OS and C). We can also end up in a situation in which one of the kicker’s types plays a 

restricted mixed strategy and the other one plays a pure strategy, and the goalkeeper chooses a 

restricted mixed strategy himself (which is the best response to the kicker who plays the 

restricted mixed strategy). This last case produces the apparently paradoxical situation that, in 

equilibrium, the goalkeeper never chooses the center of the goal while one of the kicker’s type 

always shoots to that place. 

 The relative lack of information that the goalkeeper faces in a situation of incomplete 

information makes that the average scoring probability is higher than under a situation of 

complete information, which is equivalent to say that, on average, the kicker is better off under 

incomplete information and the goalkeeper is worse off. This feature can therefore be used to 

find the “value of information” in this game. As goalkeepers’ payoffs are the complements of 

the scoring probabilities, the value of knowing the true characteristics of a kicker can be 

measured as the difference between the expected scoring probability under complete and 

incomplete information. This difference is smaller if we are in a situation in which uncertainty 

is small (i.e., when the parameter θ, which measures the distribution of the kicker’s types, is 

very close to zero or to one) and becomes larger when we approach the level of θ where the 
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Bayesian equilibrium of the game changes from case A to case B. The difference will also be 

larger if the different types of kickers are “more different” among themselves. 

 Another virtue that the incomplete-information approach could have is to solve some 

puzzles that the empirical literature on penalty kicks has discovered. Indeed, we have seen on 

section 5 that the Nash equilibrium concept performs quite well to explain some phenomena 

observed in a number of empirical studies about penalty kicks, but that some other features are 

hard to explain using a complete-information approach. This is particularly true for the 

relatively widespread fact that concerns shots to the center of the goal, which are typically 

more common than what a complete-information Nash equilibrium predicts. This phenomenon 

has been analyzed by Bar-Eli et al. (2007) as a weakness of the game-theoretic approach to 

penalty kicks, and it has been explained by those authors using an alternative approach (called 

“norm theory”) derived from psychological economics. The essence of that approach is that 

goalkeepers are not actually minimizing an expected scoring probability but following a social 

norm that prescribes a certain action (jumping to the right or to the left) instead of a situation of 

“inaction” (i.e., staying in the center of the goal). If the “social penalty” for choosing C when 

the kicker chooses NS or OS is higher than the one received for choosing NS or OS when the 

kicker chooses C, then a goalkeeper may prefer not to choose C in any situation, although he 

knows that he can reduce the expected scoring probability by choosing the center of the goal 

instead of jumping to one of its sides. 

 By introducing incomplete information, however, the situation described in the 

previous paragraph can be explained as the result of a game-theoretic equilibrium. Without 

recurring to psychological arguments, we have seen that it can be optimal for a goalkeeper to 

randomize between NS and OS although he knows that a group of kickers will always choose 

C, provided that such a group of kickers is relatively small. We have also seen that it is 

possible to think of certain Bayesian equilibrium solutions in which the goalkeeper randomizes 

among NS, OS and C, and the different types of kickers choose more restricted mixes (e.g., 

between NS and OS) or even pure strategies. 

The main analytical problem of introducing incomplete information into the penalty-

kick game may perhaps be its extreme capacity to match the data. Indeed, if we build a game 

of incomplete information that postulates more than two types of players and we arbitrarily use 

different probabilities for those types, then we could probably explain any dataset on penalty 

kicks as a result of a particular Bayesian equilibrium. If that is the case, then many of the 

empirical tests that the penalty-kick game-theoretic literature has designed could become 

useless, since it would actually be impossible to distinguish between a Bayesian equilibrium 
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and a situation in which the players are not choosing their strategies rationally. 

We nevertheless believe that the Bayesian equilibrium concept also opens the door for 

new possible empirical estimations of the penalty-kick game, especially in cases in which it is 

not clear whether the goalkeepers know their opponents’ types. This is particularly true for 

situations in which the expected incomplete-information solution is markedly different from 

the expected complete-information solution, and especially when we can somehow divide a 

sample of penalty kicks into different types of kickers10. In those cases, it could be possible to 

contrast the predictions of the complete-information Nash equilibrium concept with the ones of 

the incomplete-information Bayesian equilibrium concept, and also with other alternative 

concepts that are foreign to the game-theoretic approach. 
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