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The Penalty-Kick Game under Incomplete Information

German Coloma

Abstract

This paper presents a model of the penalty-kickeghetween a soccer goalkeeper and
a kicker, in which there is uncertainty about tiek&r's type (and there are two possible types
of kicker). To find a solution for this game we uke concept of Bayesian equilibrium, and we
find that, typically, one of the kicker's types imilay a mixed strategy while the other type
will choose a pure strategy (or, sometimes, a fidstd mixed strategy”). The model has a
simpler version in which the players can only clebstween two strategies (right and left),
and a more complex version in which they can alsmose a third strategy (the center of the
goal). Comparing the incomplete-information Bayeskiequilibria with the corresponding
complete-information Nash equilibria, we find tihagll cases the expected scoring probability
increases (so that, on average, the goalkeepeavrsevoff under incomplete information). The
three-strategy model is also useful to explain witpuld be optimal for a goalkeeper never to
choose the center of the goal (although at the saneethere were some kickers who always
chose to shoot to the center).

JEL Classification: C72 (non-cooperative games), L83 (sports).

Keywords: soccer penalty kicks, mixed strategies, Bayesequilibrium, incomplete
information.

1. Introduction

The penalty-kick game, in which a soccer goalkeepe a kicker face each other, has
become an important example in the applied gameryhiéerature to analyze mixed-strategy
Nash equilibria. The reason of this importance pbiyp has to do with the fact that it is a game
whose solution generates a clear theoretical piedi@and, at the same time, it is relatively
easy to gather data about actual outcomes of tine.gaesides, this is a game in which it is not
necessary to perform laboratory experiments, spar@lty-kick situations in soccer matches
are frequent, and soccer players are usually mlaieeshoot and to save penalty kicks.
Moreover, there exist relatively large recordstw# tlifferent details involved in many actual
penalty kicks shot at various soccer leagues (€1iipey were scored or not, the side chosen by
the goalkeeper and the kicker, the identity ofgbalkeeper and the kicker, the situation of the
match at the moment of the shot, etc.), and thigsh® control for several factors that may

influence the result of the game.
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All the game-theoretic literature that we know ab@enalty kicks analyzes this
situation as a game of complete information, ae.a game in which the two players know the
characteristics of each other, and hence they khevwexpected payoffs that they will receive
in the different strategy profiles of the game. fEhis a good reason for this assumption, which
is the idea that goalkeepers and kickers in a psideal soccer league are usually well-known
players whose main characteristics are recognigetidir opponents, and those characteristics
are precisely the ones that define the parametkrshwestablish the expected payoff of the
penalty-kick game. Complete-information games, roeoee, are also easier to solve and,
perhaps more importantly, are easier to test eogblyi This ease is probably the best
explanation for the success of the penalty-kick gam a prominent example in the game-
theoretic literature.

Not all soccer penalty kicks, however, are shdiinations in which it is reasonable to
assume complete information. In many cases, edpetiaamateur matches and in matches
between teams that belong to different leagueis, fitossible that players do not know each
other and, therefore, are uncertain about sevemabitant characteristics that may influence
the outcome of the game. It is also possible thekicker (and, less usually, the goalkeeper) is
a player who is not the “typical choice” in his t@abecause he is out of the match or because
the team has decided to change him due to a pairpesformance. Moreover, as penalty
kicks are sometimes used as tie-breakers in sonreaments, and this requires that several
players from each team shoot penalty kicks, itassible that some of the designated kickers
do not usually shoot penalty kicks in professiomatches. This may generate a situation in
which the goalkeeper is uncertain about some okitler’'s relevant characteristics, changing
the game into one with incomplete information.

When we have to analyze a game with incompleterimftion, the main solution
concept for games with complete information (idash equilibrium) is usually unavailable.
Since the seminal contribution by Harsanyi (19@i0wever, we have an alternative concept to
apply in these cases, which is the so-called “Bayesquilibrium”. This equilibrium relies on
the idea that, under incomplete information, playgpically have data about the probabilities
of their opponents’ characteristics, and this afldiwem to figure out which are the different
“types” of opponents that they may face and théabdity associated to each type. With that
information we can build an equilibrium in whichcbaplayer’s type plays his best response to
their opponents’ strategies, taking into accouatgtobability of facing each opponent’s type.

In this paper we will develop a model of a penditsk game in which there is a single

type of goalkeeper and two types of kickers. Thisansistent with several results that appear



in the literature, and especially with the empiricdbservation of Chiappori, Levitt and
Groseclose (2002) that professional goalkeepers lmsically homogeneous in their
characteristics as penalty-kick savers, and tretthin variation that we observe comes from
the kickers’ side. In their contribution, for exapthey find that the complete-information
penalty-kick game can have two different classedNash equilibrium, depending on the
scoring probability associated to shooting to tleter of the goal. If that scoring probability is
relatively low, then the equilibrium is what theglica “restricted-randomization equilibrium”,
in which both the goalkeeper and the kicker randentietween left and right, but they never
choose the center. If conversely, the scoring fibiba of shooting to the center of the goal
(when the goalkeeper chooses one of his sideslasively large, then we find a “general-
randomization equilibrium” (in which both the goa#per and the kicker randomize among
left, right and center).

In a recent paper by Jabbour and Minquet (200@),aluthors allow for an additional
strategy dimension which is the height of the kitkshot, and assume that shooting high to
one of the sides (left or right) assures the kickerertain scoring probability (because the
goalkeeper cannot save the shot, and his only Iofi&t the kicker shoots outside the goal).
In this case we also have two classes of Nashikquih, which depend on the scoring
probability of shooting high: if this probabilitysirelatively small, then the kicker will
randomize between shooting right-low or left-lowflne will never shoot high); if it is large,
then the kicker will strictly prefer to shoot higlnd he will always choose his “natural side”
(i.e., the goalkeeper’s right, if the kicker ishigooted, or the goalkeeper’s left, if the kicker
left-footed).

Different types of kickers also change the Naghildgium in the simplest versions of
the penalty-kick game. In Palacios-Huerta (2008), &xample, both the goalkeeper and the
kicker choose between two strategies (left andtyidiut the equilibrium mixed strategies are
functions of the scoring probabilities of the fquussible strategy profiles. Changing one of
these parameters, therefore, changes the equilibrend playing a strategy that is an
equilibrium one for a certain set of parameters nvitiee set of parameters is different,
consequently, implies that the other player’s esponse is a pure strategy and not a mixed
one. This last situation, of course, is never ahNeguilibrium in a complete information
setting, but it may well be part of a Bayesian Blowium if we assume incomplete information
about the kicker’s characteristics.

In the next section of this paper we will presasimple model in which we will allow

for uncertainty about one of the four parameteas tlefine the scoring probabilities of the 2x2



version of the penalty-kick game. This change, tiogewith the inclusion of an additional
parameter that defines the probability distribut@nthe kicker's types, will generate a new
game in which the kicker plays knowing the goallex&pcharacteristics but the goalkeeper
plays against an uncertain opponent (who may béwof different types). We will also
compare the solution of this game with their cortesieformation counterparts, i.e., with the
Nash equilibria of the games in which the goalkeegernatively faces each of the kicker’s
types, knowing who his opponent is.

In the third section of the paper, we will develapother model in which both the
goalkeeper and the kicker can choose among thffetit strategies (right, left and center),
and we will also compare the equilibria of the gammeder complete and incomplete
information. Following that, the fourth section wihclude a numerical example of the
proposed models, and the fifth section will devedopempirical illustration based on data from
previous studies about the penalty-kick game. Kintie sixth section will be devoted to the

conclusions of the whole paper and to some finakms.

2. A model with two strategies
2.1. Complete information

Following the notation that appears in Coloma @0@ve will build a game in which
the kicker has to choose between his natural sidegoalkeeper’s right, if the kicker is right-
footed, or the goalkeeper's left, if the kicker left-footed) and his opposite side (the
goalkeeper’s left, if the kicker is right-footed; the goalkeeper’s right, if the kicker is left-
footed). Similarly, the goalkeeper has to choogeéen the kicker's natural side (NS) and the
kicker's opposite side (OS). The probability of sing if both the kicker and the goalkeeper
choose NS i®y, while the probability of scoring if both the kiekand the goalkeeper choose
OS isPo. If the kicker chooses NS but the goalkeeper cb®@S, then the scoring probability
is zn, While the scoring probability in the case that #icker chooses OS and the goalkeeper
chooses NS igo. As this is a constant-sum game in which the kiekies if he scores and the
goalkeeper wins if the kicker does not score, thiem kicker's expected payoff can be
associated to the scoring probability and the gaegller’'s expected payoff can be associated to
the complement of that probability. As it is a sitaneous game, then the kicker’'s strategy
space consists of two strategies (NS and OS) anddhlkeeper strategy space also consists of
two strategies (NS and OS).

Both the theoretical and the empirical literatugeea that the scoring probabilities of



the penalty-kick game have to be defined so that*' 7o > Py > Py, and these conditions
guarantee that the Nash equilibrium of the comglgmation version of the game is a
mixed-strategy one, in which the kicker choosesvwtB a certain probabilityy (and chooses
OS with probabilityl-n), and the goalkeeper chooses NS with a certaibatibty v (and
chooses OS with probabilityl-v). Moreover, the fact thatPy > Po” makes that, in
equilibrium, bothn andv are greater than Y. Besidesxrif is strictly greater thano, then it
will also hold that, in equilibrium,¥ > n”, while if it holds that %y = 70", then equilibrium
implies that h =v"*,

One of the easiest ways of building a penalty-kjakne with incomplete information is
to assume that there is a single type of goalkeapdrtwo types of kickers. We will assume
that kicker 1 is someone for whomy‘> 70", while kicker 2 is someone for whonay = zo”".

To simplify matters even further, we will assumattthe values ofPy\” and “Po” are the same
for both types of kickers, and thatg” is also the same for both types. Then our model
depends on the standard four parametegsao, Py andPo), plus an additional paramete@r
that represents the probability that the goalkedpees kicker 1 (while the probability of
facing kicker 2 isl-#). The complete probability matrix is the one thppears on table 1.

Table 1: Scoring-probability matrix for the two-str ategy game

Goalkeeper
NS O<
Kicker 1 NS R Tin
(Probb) oS Tlo Po
Kicker 2 NS R Tlo
(Prob 19) (O Tlo Po

If we first consider the case in whichy' > 70" (game 1), then the complete-
information Nash equilibrium implies that both thealkeeper and the kicker are indifferent

between choosing NS and OS. For this to happshpitld hold that:

Py + o' (1-my) = ey + Por(1-ny) - n, = T, — R 1) ;
M+t - - R

Pyve +anc(Lve) =movy + Po(1-v ) = v, = ke (2).
M+, - P, — R

Alternatively, if “zy = 70" (game 2), then the complete-information Nash kopim

! These results were first presented by Chiappeijtt.and Groseclose (2002).



solution of the game occurs when:

— — -F .
Pn'ne + o (1-np) = mornz + Por(1- n,=———— 3);
NN + 7o (1-1p) = monz + Por(1-1p) = 2 oL -R,- P 3
— — -R
Pvve + 1o (1-vo) =mova + Po(1-v = Vo= —————— 4).
NV2 + 7o (1v2) =move + Ro(1v) = 2L -P.-P (4)

The equilibrium values ofn, ny, vi and v, can be compared to obtain some
relationships that will later be useful to analylae Bayesian equilibrium of the corresponding
incomplete-information game. By simple observatige find that ‘h, = v,” (as we have
already anticipated) and thaty*> n;” (since both equilibrium expressions have the same
numerator buty’s denominator is greater thag's). We can also prove that,“>v,", as the
following lemma shows.

Lemma 1 Under complete information, the Nash equilibriumiuton of the penalty-kick
game implies th&tv, >v,".
Proof: Suppose instead that;"<v,". Then it should hold that:

v, = R < - =v,
W+ -R-R  2T,-R-B

But if this is so, then it should also hold that:
(T[N_Po)[(zmo_ R\J_ % )< (—[o_ % M([N+n0_ E\J)_ B) ;
which implies that:

@ -Rm - (@, +m )R+ B (R+ B ¥ M+~ PN @+ )& PP F;
(ZH[O_PN)DTN<(HN+.’TO_F?\J):T[O = (T[O_PN)DTN<(HO_PN)DTO

= (T[O_PN)E(T[N_T[O)<O'

But, as we know thatzp > P\’ and “zy > no”, then this is a contradiction. Therefore it holds
that “v; >v,", g.e.d.

2.2. Incomplete information

Let us now turn to the incomplete-information gasewhich the goalkeeper does not
know if he is facing kicker 1 or kicker 2, but tkicker knows his type (and also the unique
goalkeeper’s type). In this case the goalkeepefr ahibose NS with some probabilityy,
regardless of the fact that he is facing kicker kioker 2. Given this, kicker 1 is strictly better
off by shooting NS if it holds thaty < v,”, while he is strictly better off by shooting OSiti
holds that ¥\ > v1". Correspondingly, kicker 2 is strictly better dff shooting NS if it holds



that “vm <v2”, while he is strictly better off by shooting OfStiholds that %y > v,".

Let us first assume that, ag, > v,", the goalkeeper chooses a value fgrsuch that
“v1>vm > 2" In this case kicker 1's best response will bekay NS as a pure strategy, and
kicker 2's best response will be to play OS. Bus tbould only be an equilibrium if the
goalkeeper is indifferent between choosing NS aSdcinself, for which it should hold that:

Pu-0 + 70 (1-0) = 10 + P (1-0) - o=— o~ 5):

L+ -R-R
and this is something that will generically occtithazero probability. We should therefore
look for alternative equilibria in which one of thecker's types plays a pure strategy and the
other one plays a mixed strategy. Two of thoseliia exist, and we will label them “case
A” and “case B".

In case A, kicker 1 chooses NS, and both kickem#@ the goalkeeper play mixed
strategies. For this to occu#y has to be equal @, and therefore kicker 1 is strictly better off
by playing NS and kicker 2 is indifferent betweeis Mnd OS. For the goalkeeper to be
indifferent between NS and OS, however, we need tha

PnO + [Pyng + 1o (1-p)]-(1-0) = N0 + [no'nz + Por(1-np)]-(1-6)

n,= (T[O_PO)_ (T[N_ R )® /(1-6) (6) .
200, R~ R

=

In case B, conversely, kicker 2 always chooses &% both kicker 1 and the
goalkeeper play mixed strategies. For this to qceyrhas to be equal te;, and therefore
kicker 2 is strictly better off by playing OS antker 1 is indifferent between NS and OS. For

the goalkeeper to be indifferent between NS andHo@gever, we need that:
mor(1-0) + [Pyng + 7o (1-my)]-0 = Por(1-0) + [nnng + Por(1-ng)]-0

L e (oR)E
T+ -R - R

(7).

Both equilibria under cases A and B can also bensss situations in which the
goalkeeper is randomizing between NS and OS becheiseas the belief that one of the
players is choosing a pure strategy with probabibihe, and the other player is playing a
mixed strategy such as the one described by eqsa6oor 7. Under case A, therefore, his

belief is that, on average, the kicker will chobk® with a certain probabilitg, equal to:

2 This is because, @scould be any real number between zero and one ttreeprobability that it is exactly equal
to a particular real number is always zero (asetlage infinite real numbers between zero and one).



_ _ — _ \(T[O_PO)_(HN_PNﬁ/(l_e): QTO_ Fc)))_ (TN_ PN h;@ .
n, =0 + (1-0)m, =0+ (-0 1o Tho S e G

while under case B his belief is that, on averahe, kicker will choose NS with a certain

probability ng equal to:

_ o (6 =F)/8 T~
=0 + (1-0)h, =80 1-6 YIo=
e " : T[N+T[O_PN_PO+( . Tt + T =

9) .

20 oU
[e]Y)

One interesting property of the Bayesian equdiboi this game under incomplete
information is that, for a given set of parameterdy one of them exists. Indeed, the situation
is such that, if & < (mo-Po)/(zntmo-Pn-Po)”, then case A equilibrium exists and case B
equilibrium does not, while if&# > (zo-Po)/(zn+ mo-Pn-Po)”, then case B equilibrium exists
and case A equilibrium does not. These relatiorsstape the results of the following
propositions:

Proposition 1 If the Bayesian equilibrium of the case A inconglaformation game exists,
then it should hold that) < (zo-Po)/(zn+ mo-Pn-Po)”.

Proof: Under the Bayesian equilibrium of case A, kicReshould play NS with a positive
probability. Therefore it should hold that:

n,= (T[O_PO)_ (T[N_ R ) /(1—9)>0

20, -R - R
But if this is so, then it should also hold that:
T, — P> (my —R)® /(1-6) = (M, —P,)[1-6)> (- R, Y® ;
which implies that:
_ _ _ o — F)o
T, —Py> (M +1,—- R, - R J® = 9<T[N+T[O_PN_% g.e.d.

Proposition 2 If the Bayesian equilibrium of the case B incomgleformation game exists,
then it should hold thatd > (ﬂo-Po)/(?l’N‘F?To-PN-Po)".

Proof: Under the Bayesian equilibrium of case B, kickeshould play NS with a probability
that is smaller than one. Therefore it should llo&d:

n= (P)/O
M+ -R-R”
But if this is so, then it should also hold that:
T[o_Po
-Po<(my+m,-R - R > .e.d.
T, -Po<(m+1,- R, - R B = 0 M+, -P - P, g.e



The model described in the previous paragraphsesithat, when there are two types
of kickers and only one type of goalkeeper, andethie incomplete information, then the
Bayesian equilibrium of the corresponding incompletformation game generally implies that
one of the kicker’s types will choose a pure styatand the other type will choose a mixed
strategy, while the goalkeeper will also choosei®eth strategy (which is the same strategy
that he would choose if he were facing the kickéiovis playing a mixed strategy). If we
compare this Bayesian equilibrium with the Nashildga that would occurred if the same
games were played under complete information, welldveee that in this situation the
goalkeeper is typically worse off and one of thekkr’s types is typically better off.

In order to perform the comparisons outlined ie firevious paragraph, we should
compare the expected scoring probabilities undéerdnt situations. From those comparisons
we will see that, given the parameters that we inseur model, kicker 1 obtains a higher
expected payoff (i.e., a higher expected scorirapability) than kicker 2 under a complete-
information Nash equilibrium. When we turn to thecomplete-information Bayesian
equilibria analyzed, we see that the kicker whoosles a mixed strategy obtains the same
expected payoff than under complete informationjlevithe kicker who chooses a pure
strategy is strictly better off. Under case B, nowe, kicker 2 is able to obtain the same
expected payoff than kicker 1.

The expected scoring probability of a particulaakkr is simply the average of the
scoring probabilities implied by the strategy thatchooses, weighted by the probabilities that
the goalkeeper “guesses” that strategy and by tbbapility that the goalkeeper “does not
guess” that strategy. When a kicker is playing aeuhistrategy, then the expected scoring
probability of both NS and OS should be the saméekVhe is playing a pure strategy,
conversely, his expected scoring probability is ¢ine associated to the pure strategy that he
chooses, that has to be greater than the expemiedg probability of the alternative strategy.

Under complete information, kicker 1's expectedrstg probability is equal to:

SP1(C|) = R\|‘V1 + nN-(l—v 1) =novyt Po'(l-v 1) = T[N BTO _ PN EPO (10) X
M+ -R-R

while kicker 2’'s expected scoring probability isuagjto:

T[OZ_PN[PO

SFE(CI) =Ryve + no'(l'\’ 2) =novao+ PO-(:L-V 2) = ZE-[O — PN — %

(11) .



Under incomplete information, the expected scorprgbabilities for the kickers
depend on the case that holds. Under case A Bayesjailibrium, kicker 2 obtains the same
expected scoring probability that he gets underpteta information, becauses’ = v;” and
therefore he is indifferent between choosing NS @8d Kicker 1, conversely, is strictly better

off by choosing NS, which now gives him the follegiexpected scoring probability:

T[omnN+PN)_F|>\AEK'TN+%) (12).

SP(IA) = Pyva +a-(1v ) = 20, - B, - P
N (o]

Conversely, under case B, kicker 1 obtains theesarpected scoring probability that
he gets under complete information, becauge="v," and therefore he is indifferent between
choosing NS and OS. The one who is strictly betdters kicker 2, who is now choosing OS
and obtaining the following expected scoring proligb

SP(IB) = tove + Py(1vg) = T, iy + Py ) - Ry Ol + R ): m, O, - RO

i (13) .
M+, R - R M+~ R-R

The idea that kicker 1 is better off than kickeur@er complete information comes
from the fact that, under the assumptions usedis paper, both kickers obtain the same
expected payoff in three of the four cells of tlkersg-probability matrix (see table 1) while
kicker 1 gets a higher payoff in the remaining ¢githce 7y > 7o"). As the goalkeeper adjusts
his strategy to this situation, however, the relahip between the expected scoring
probabilities that these two types of kickers irelug not so obvious when one observes the
equilibrium values gotten at equations 10 and Iie Proof thatSR(CI) is actually greater
thanSR,(Cl), therefore, is given in the following proposition.

Proposition 3 Under complete information, the expected scoringppbility for kicker 1 is
greater than the expected scoring probability fiwkler 2.

Proof: Under complete information, the expected scogrgpability for kicker 1 is the same
choosing NS and OS. Similarly, the expected scoprapability for kicker 2 is the same
choosing NS and OS. Therefore we can write that:

SR(CI) = SR(CI/OS) =no'v1 + Po(1-v1) = Py + (mo-Po)v1 ;
SB(CI) = SR(CI/OS) =ng'v 2 + Py (1-v2) = Po + (mo-Po)v2

As we assume that: > Po”, and we know from lemma 1 that,“> v,”, then we also know
that:

Po + (mo-Po)'v1 > Po + (mo-Po)v2 = SR(CI) > SRB(CI) g.e.d.

A second comparison that we can make between &geacoring probabilities is the
one that refers t&P,(Cl) andSP(IA), which is the theme of proposition 4. Finally, we&n

10



also prove thatSPy(IB) > SR,(CI)”, and this is the theme of proposition 5.

Proposition 4. Under case A Bayesian equilibrium with incomplet®imation, the expected
scoring probability for kicker 1 is greater thanetlone that he obtains under complete
information.

Proof: Under complete information, the expected scogrgpability for kicker 1 is the same
choosing NS and OS. Conversely, the expected srprobability for kicker 1 under case A
with incomplete information is greater if he cho®9¢S, which is the pure strategy that he
actually chooses in equilibrium. Therefore we caiteathat:

SPR(CI) = SR(CI/NS) = Rev 1 + N (1-v 1) = iy — (n-Pr)-va ;
SP(IA) = SP(IA/NS) = By'va + v (1-va) = iy — (n-Pn)-va

By the definition of case A Bayesian equilibriume \wnow that ¥4 = v2". As we also know
that “zy > PN” (by assumption) andvi > v,” (from lemma 1), then is should hold that:

7N — (In-Pn)vi < 7in — @n-Pr)va = SP(CI) < SR(IA)  g.e.d.

Proposition 5 Under case B Bayesian equilibrium with incomplet®imation, the expected
scoring probability for kicker 2 is greater thanetlone that he obtains under complete
information.

Proof: Under case B with incomplete information, the @xtpd scoring probability for kicker
2 (SR(IB)) is the same than the expected scoring probalibitykicker 1 under complete
information SPR(Cl)), since they are both equal térN.7o-Pn.Po)/(ant 7o-Pn-Po)”. As we
know (from proposition 3) thatSR(CI) > SR(CI)", then this implies that SR(IB) >
SB(CI)", g.e.d.

3. A model with three strategies
3.1. Complete information

Let us now assume that our two players (i.e.gttedkeeper and the kicker) can choose
among three different strategies instead of twoe Tihird additional strategy (besides the
kicker's natural side and the kicker's oppositee}is the center of the goal (C), so the kicker
can now choose to shoot to that place and the gep#t can choose to stay in that place.
Following Coloma (2007), we will use the letieto denote the probability of scoring if the
kicker chooses to shoot C and the goalkeeper chagitieer the kicker’s natural side (NS) or
the kicker's opposite side (OS), and we will alsswane that, if both the goalkeeper and the
kicker choose C, then the scoring probability ioZe

Using the same assumptions derived from the thieatetnd empirical literature about
this topic, we will now assume thatn > 7o > 1 > Py > Po > 07, which implies that the

scoring probability when the kicker shoots to thenter of the goal (and the goalkeeper

3 These assumptions, in fact, are inherited from rhedel originally proposed by Chiappori, Levitt and
Groseclose (2002).

11



chooses either NS or OS) is lower than the scaonudpability of choosing any of the sides
(when the goalkeeper chooses the other side orcéimeer) but higher than the scoring
probability of a situation in which the ball goesdne of the sides and the goalkeeper guesses
the shot. We will also assume that there are tyegyof kicker (kicker 1 and kicker 2) and a
single type of goalkeeper. Those kickers are charaed by having different values for the
parametef:, such that /i; < ". The corresponding probability matrix, thereforg,the one

that appears on table 2.

Table 2: Scoring-probability matrix for the three-strategy game

Goalkeeper
NS C OS<
Kicker 1 NS R TIN TIN
(Prob6) C W 0 i
o< To Tlo Po
Kicker 2 NS Pn I I
(Prob 16) C 2 0 T
(K] Tlo To Po

Let us assume, moreover, that the values ahdu, are such that:
m, 0, - R R

W, < , H, > My 0 — Py (14) .
M+ -R-R” L+ -R-R

Following Chiappori, Levitt and Groseclose (2002 know that in that case the

corresponding complete-information Nash equilitm@aur when it holds that (game 1):

— n-F . — .
= : =0 15) ;
M, R R . (4
v, = R ; y1=0 (16) ;

_T[N+T[0_PN_RD

and when it holds that (game 2):

n,= p—zmno_Po)
(Tti\l_PN)[(T[o_%)"'UZEK'TN"'T[O_ Rl_ F())

C2: (T[N _PN)RT[O_ sz) . (17),
(my —ROUG - R )+, UM+, - R- R

Ty EQT[O _Po)+“2|:(T[N_T[o)

’ (T, —ROHG - R )+, Ui + 1, - R— R
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Uzl:qu+T[o_PN_ Po)+ FI)\IDF())_T[NBTO

. (18);
(T[N _PN)E(T[O_ Po)+u2|:(r[N+T[o_ RJ_ % J

Y2 =

wherec; is the probability that kicker 1 choosesdgz|s the probability that kicker 2 chooses
C, 71 is the probability that the goalkeeper choosesHerwhe faces kicker 1, angd is the
probability that the goalkeeper chooses C wherabed kicker 2.

As we see, the fact that is a relatively small number induces kicker 1 toothoose C
in any circumstance (i.e., it makes C a dominateategyyy for kicker 1). Knowing that, the
goalkeeper never chooses C, either, when facingkit. Conversely, ag is relatively large,
kicker 2 is willing to choose C with some positigbability. Knowing that, the goalkeeper
sometimes chooses C when facing kicker 2. Followireyterminology of Chiappori, Levitt
and Groseclose (2002), we will say that the Naghlibgum of the game between kicker 1
and the goalkeeper is a “restricted randomizatepnlidrium”, while the Nash equilibrium of
the game between kicker 2 and the goalkeepergemetal randomization equilibrium”.

Due to the fact that in this model we are assuntiad .1 < w2” (and all the other
parameters are the same for the two types of Kickkken we will also conclude that the
expected scoring probability under game 1 will beaker than the expected scoring
probability under game 2. This is in fact the reséithe following lemma.

Lemma 2 Under complete information, the expected scoringbpbility for kicker 1 is
smaller than the expected scoring probability fiokkr 2.

Proof: Substituting the equilibrium values ofi, v» and y, into the expected scoring
probabilities of kickers 1 and 2 when they eitheoase NS, OS or C, we can write that:

T, O, - B, [R
SR (NSF SP (O N MO ;
2 (NSy SP (0Sy_~o B2

_ \ H, [l.]T[N mT[o _P0)+T[O HT[N —Py )]
SF; (NS)— SE (OS-): %P (G:}(T[N _PN)[(T[O_ %)+u2[|(r[N+T[O— F?\‘— F())

If we assumed thatSP, > SP,”, then it should hold that:

Ty ﬁTo _Po EPN > H, E[T[N [(T[o_ Po)"'T[oDQTN_ PN )
T[N+T[0_PN_% (’TN_FI)\I)I(TO_ %)F“zDﬁN‘HTo_ PN_ B
(.’TNDTO_POEPN)E(’TN_FI)\I):'(TO_ %PUZDﬁN-HTO_ PN_ BWT(N‘ E@T(o_ E =
Ty DTO_PN EPo
M+ -R-R

but this is a contradiction with the assumptiortestain equation 14. Therefore it holds that
“SP, < SR, qed

M, <

13



3.2. Incomplete information

Let us now turn to an incomplete-information casewhich the goalkeeper does not
know if he is facing kicker 1 or kicker 2, but tkicker knows his type (and also the unique
goalkeeper’s type). Let us assume that there i®lapility 6 that the goalkeeper faces kicker
1, and a probabilityl-6 that he faces kicker 2. In that case, as we didHe two-strategy
model, we have to look for a Bayesian equilibriumwihich the goalkeeper chooses a single
strategy and each of the possible kickers choasesan strategy.

One possible Bayesian equilibrium for this sitoati(case A) occurs when the
goalkeeper chooses the same strategy that he wboluse in a complete-information setting
in which he were facing kicker 1 (i.e;pa > 0, ya = 0). Given that, kicker 1 is indifferent
between choosing NS and OS, and kicker 2 is strimtter-off by choosing C, provided that

the goalkeeper never chooses C in his equilibritrategy. All these results can be stated as

follows:
n1=nN+f§)‘E° _ ; 6=0 (19);
“'NT o
np=0 ; e=1 (20) ;
-P
VA=T%+TT['[:_PO_P ; YA =0 (21) .
N (o]

Another possible Bayesian equilibrium (case B)uosavhen the goalkeeper chooses
the same strategy that he would choose in a compiarmation setting in which he were
facing kicker 2 (i.e.yg > 0, yg > 0). Given that, kicker 2 is indifferent between chiog NS,
OS or C, and kicker 1 is indifferent between chogsilS or O$ This implies that:

_ T[NmT[O_Po)"'Uzl:(nN_T[o)

" (=R = R )FH, DG+ o~ R= R
M, Ly, + 11, — Py — Ry )+ R OB -, [t
(my — RO, - R )+, UM+, - R- R

Ye = (22) ;

_ M, [DT[N Eﬂﬂo _Po) T, HT[N - Py )] .
S S O e )t~ By vy # o - R~ B @)

4 This last feature has to do with the fact thatpim model, both kickers have the same values AQh “mo”,
“Py’ and “Po”. If there were some differences in these valuestiie two types of kickers, then kicker 1 might
strictly prefer either NS or OS.
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_ S H, [l]TTN [QT[o _Po)+ T HT[O_ PN )]
S e S O S O =P e - R, O P R R -

The values fon; andn; in this Bayesian equilibrium, however, are indetieiate, since
what we need is that, on average, they equate @hee \thatn, has in the corresponding
complete-information Nash equilibrium. The equililon value forc,, conversely, is a function
of the probability parametéx Indeed:

O, + (1-6)Ch, = M, 1% =P ) (25) -
' ? (HN_PN)E(T[()_%)+“2[('TN+HO_ R\l_ %:

(1‘9)@:2: (T[N_PN)E(T[O_PO) ‘ —
(T[N _PN)E(T[O_ %)+“2EK’TN+T[O_ R—RB.

- (M =R, ~ Ry) | (26)
1=-0)0(rmy R )T — Ry )+, iy + T~ R— R)

For these strategy profiles to be Bayesian dmali however, some additional
conditions have to be fulfilled. Under case A, &otample, we need that the goalkeeper be
indifferent between choosing NS and OS, and syrib8tter-off by choosing any of those
strategies than by choosing C. Let us now define ¢brresponding expected scoring
probabilities induced by the three possible goglkeestrategies (NS, OS and C) in the
following way:

_ 8, O0u -R [R)

SRNSFOUINTR+ (R0, § (B0 Ju,== " Pl o i, @7);

_8m, 0, -R [R) .

SR (OSF60InM, + (= n VIR @0 == " ot @o g, (28);
— O20, Oy, - my R, ~ T, [R))

SR (C)=0TIn i+ (5 1 T, I (0 JI0==—— o e o (29).

As we see, the equilibrium values found figrandc, imply that in this cas&R;(NS)
andSR;(0OS)are equal, so the goalkeeper is actually indiffebetween choosing NS and OS.
We will also need that, in this equilibriurBRs(NS)andSP;(OS) are greater thaBR;(C), but
this only occurs for a set of values of the paramétas the following proposition shows.
Proposition 6: If the Bayesian equilibrium of the case A inconglaformation game exists,
then it should hold thatd > uy: (ant mo-Pn-Po)/[(7n-Pn): (To-Po) + iz (vt mo-Pn-Po)] .

Proof: Under the Bayesian equilibrium of case A, thelk@aper should strictly prefer to play
both NS and OS with a positive probability inste@&dC. Therefore it should hold that:
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SP, (C)> SB (NS§ SP (O =

O 20, O~ (R~ (R ), 80/, 0%~ ROR ), gy N
m+1,-P,— P, M+~ R-RB i

W, my+1m,-P - R)
(HN_PN)[(T[O_PO)"'UzEmN"'no_ R\l_ %,

g.e.d.

On the other hand, for a case B equilibrium teseit is important thah;, n, andc;
take some values that are not inconsistent withr #tatus as probability values. In particular,
we need that; is not greater than one, and this also occura foarticular set of values of the
parametep. This is the theme of proposition 7.

Proposition 7: If the Bayesian equilibrium of the case B incomglaeformation game exists,
then it should hold thatd < uy (an+ 7o-Pn-Po)/[(an-Pn): (mo-Po)+ 2 (vt mo-Pn-Po)]

Proof: Under the Bayesian equilibrium of case B, kicReshould choose C with a certain
probability ;) that guarantees that the goalkeeper is indiftdsetween choosing NS, OS and
C. But this can only be feasible if the requirediiBorium value forc; is less than one.
Therefore it should hold that:

- (1, =P, = By) o -
(1=8) LT, ~ Py )l = By )+ H, [, + Tt = R~ B )]

o> (1, R, - R,)
(T[N_PN)[(T[O_PO)"'UzmTN"'no_ Rl_ %

“2mT[N+T[o_PN_Po)
(T[N _PN)[(T[O_PO)"'UZEKT[N"'T[O_ Rl_ %:

g.e.d.

Note that propositions 6 and 7 imply that casend ease B equilibria cannot exist at
the same time. Indeed, for any particular valu&,obnly one of these equilibria can occur,
being case A equilibrium the chosen one whésirelatively large, and case B equilibrium the
chosen one whefhis relatively small.

Another set of restrictions on parametecan be found if we analyze the possible
values ofn; andn, under a case B equilibrium. Recall that, from ¢igua26, we know tha;
andn, have to be such that, on average, they have & \ejual tquy (7o- Po)/[(7n-Pn):(7o-
Po)+ 2 (ant mo-Pn-Po)] . But the possible combinations of andn, that satisfy that equation
are also limited by the conditions th& £ n; <1, and “0 <, < 1-¢". In the particular cases

where one of these constraints holds as an equtiléy the other strategy coefficient adopts a
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determinate value. But this value is also constidiiby some restrictions, and this imposes a

limit on the possible value for the parametein particular:

M, [ —Ry)

n=0 = n,= <
(1-0)d(m, - R ), - R )+, Uiy + 15— Ri— R )]

p—z(T[o_Po) < (1_9}—12(7-[1\14'“0 F?\j )_e(-[N_ N )([o 8
@=-0)[(my —R)(M6 — R )tH, My + T - R- R )l (6)[ty= R o~ B ﬂlsz“T R- B

= 0, —Py) I, — Ry )+, iy + 15— R — R)K KO- R

(TEN RO, - P)+MZD(HN+7T R-R.

m=1 = nzzp-z mno_Po)_e[ﬂ(T[N_PN)E(T[o )+U2DQTN+T[O PN P )]>O

@-6)(m, - R )L, - B )+, Uiy + 15— Ri— B )]
N M, [ —Po) (31) :
(m RO, — R+, ity + - R— B
n2=0 = nl “zl:qno P) <1
O (T, —Py) [, — Ry )+, Ly + - Ry = R
(m RO, - P)+MZD(HN+HO R-RB.
meta = o= 0PI ~R P *o” B B )bl R ),
BT, —P) I, - Ry )+U2[(T[ +T[o R—R)I
=~ 8> M, [ty =P ) (33) .

(M, —R )W, - R )+, 0 +11,- R— R

Although in our case B model all these restrictiapply to particular situations where
eithern, or n, adopt extreme values, those situations are agtiledlonly ones that are feasible
if the parametersy , 7o , Py andPo are not exactly the same for kickers 1 and 2. ineggdor
example, that one of these parameters is slightlyek or smaller for kicker 1, and that this
difference induces that kicker to strictly prefe® Mhen the goalkeeper responds optimally to
kicker 2. In that caseni = 1” (if it holds that ‘0 < (7o~ Po)/[(7n-Pn)-(mo-Po)+ w2 (vt mo-
Pn-Po)]”), or else ‘hy, = 0” (if it holds that ‘@ > uy (7o~ Po)/[(7n-Pn):(mo-Po)+ 2 (an+ mo-Pn-
Po)]”). Conversely, if the parameter values are suelh kicker 1 strictly prefers OS when the
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goalkeeper responds optimally to kicker 2, thendily possible case B equilibria occur when
“ng = 0” (if it holds that ‘@ < uy (zn-Pn)/[(7n-Pn) (mo-Po)+ 2 (vt mo-Pn-Po)] ), or else when
“ny = 1-¢;” (if it holds that ‘0 > o (an-Pn)/[(7n-Pn)- (mo-Po) + o (vt mo-Pn-Po)] ™) S,

An additional group of results that we can findngsthis incomplete-information
setting has to do with the idea that the expecisatirsy probabilities are higher under
incomplete information than under complete infororat This is particularly the case for
kicker 1 under case B, since we have found (equ&8) that in this circumstance he obtains
the same expected scoring probability than kicken@er complete information, and by lemma
2 we know that such probability is greater than dhe that kicker 1 obtains under complete
information. Another case in which a kicker’s typatains a strictly higher scoring probability
with incomplete information is the one of kickeu@der case A, as is proved in lemma 3.
Lemma 3 Under case A Bayesian equilibrium with incompletéorimation, the expected

scoring probability for kicker 2 is greater thanetlone that he obtains under complete
information.

Proof: Suppose instead thaBP(Cl) > SB(IA)". Then it should hold that:

SR(CI) = M, [y (g = Py) + 16 [(My =Ry
(T[N _PN)mT[o _Po)"'p-z EQT[N +T6 Ry _Po)

But if this is so, then it should also hold that:

> [, =SB(IA)

. Tt -R [
M, 0y Ot =Py TR )> 1, Hiy+ - R- R = “2<nNN+DrTrZ—P:-CF)6

As we know from equation 14 that this last resalinbt true, then this is a contradiction.
Therefore, SR(CI) < SB(IA)", g.e.d.

With all these results at hand, it is straightfard/to prove that the average expected
scoring probability is always higher under incom@lamformation, provided that)*< § < 1”.
That is the theme of proposition 8.

Proposition 8 If “0 < 0 < 17, then the average expected scoring probapiig greater under
incomplete information than under complete infororat

Proof: Recall that the expected scoring probabilities tfe two types of kickers under the
different analyzed cases are the following:

n [ng =P, [P
SR(CI)=SR(1A) =—To " o SP(IA) =
2(Cl) =SR(A) =P (1A) =4,
SR(CI) = SR(IB) = SR(IB) = —H2 [ [(Tlo =Fo) + T [(my =Ry )]

(T[N _PN)EQT[O_PO)"'Uz EQT[N +T[O_PN_PO)

® In fact, these conditions are additional to th@egal requirement thatd“< u,(zn+ o-Pn-Po)/[(n-Py)- (o-
Po)+ o (vt mo-Pn-Po)] ", which is the one that guarantees that a casa8an equilibrium exists.

18



Let us now define the average expected scoringgtibties in the following way:

aspcy=oc Mo "Pilfo g gp oMo =)+ 1o [(My =RV ;
T[N+T[O_PN_PO (HN_PN)QT[O_PO)"'UzmnN"'T[o_PN_Po)
n,[n,-P, [P
ASRIA)=03F—"—° N_"O +(1-6
RIA) =0 o0+ 1=0)

M, [[my [Ty = Py) + 16 [(My —Ry)I
(T[N _PN)[QT[O _Po)"'“z EQT[N +1,— Ry _Po)
As we know (from lemma 3) thaSB(IA) > SP(CI)”, then we also know thatASP(IA) >
ASP(CI}). And as we know (from lemma 2) tha®P(Cl) = SPy(IB) > SP(CI)”, then we also

know that ‘ASP(IB) > ASP(CI) Combining both results, it holds that, for amlwe ofd such
that “0 < 8 < 17, it is true that ASP(ll) > ASP(CI), g.e.d.

ASH(IB) =

4. Numerical example
4.1. Two-strategy model

The results that we have obtained in section 2beaillustrated for a particular set of
parameters. Using the estimates that appear inn@ol(2007), we will assume thaty' =
0.98, “mo = 0.94, “Py = 0.68 and “Po = 0.48. This implies that, under complete

information, the equilibrium values foi, n,, v; andv, are the following:

= 0.94- 0.48  0.605¢ - v, = 0.98- 0.48 _0.657¢ -
0.98+ 0.94- 0.68 0.48 0.98+ 0.94- 0.68 0.48
n,=v,= 0.94- 048 _ g3gc;

"~ 2[D.94- 0.68 0.48

which is therefore an example of the theoreticaiiltethat we obtained, which states that*
v2 = Ny > ny”. Besides, the corresponding expected scoringabitiies under this complete-

information situation are the following:

SR (Cl)= 0.98D.94 0.681048_ o . SR (Cl)= 0.94 - 0.6810.48 _ (
0.98+ 0.94- 0.68 0.48 2[D.94- 0.68 0.48

If we now turn to the incomplete-information sitiom, we have two possible cases
depending on the fact thatis either greater than or smaller than 0.6053. Wite< 0.6053
(case A), it will hold that:

n=1; v, =V, =0.638¢ ; n, = 0.6389—M ;
S

whereas, if > 0.6053 (case B), it will hold that:
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n,=0; v, =V, =0.657¢ ; n, =

As we already know from the results obtained intisa 2, “SB(IA) = SP(CI) =
0.7739 and “SRy(IB) = SP(IB) = SP,(CI) = 0.7828. By applying the formula that we have
derived for equation 12, we can also find that:

sp ()= 0:940(0.98- 068y 0.68 (0.9 0.48)) /oo
2[D.94- 0.68 0.48

Figure 1: Equilibrium strategies under incomplete hformation (two-strategy model)
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---nl n2——vM‘

The incomplete-information case produces, as we la&ready seen, some results that
depend on the value 6f that is, on the proportion of kicker 1's that taeve in the population
under analysis. Figure 1 depicts the values, pf, andvy that we obtain as equilibrium values
for all possible levels of, and in that figure we can see thattends to its complete-
information level whem tends to one, while, tends to its complete-information level when
tends to zero.

Correspondingly, figure 2 depicts the averageisgagprobability under complete and
incomplete information for all possible levelséfin it we see that, unlesg = 0” or “0 = 17,

the average scoring probability is higher undeoimplete information. We also see that, when
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0 increases, the average scoring probability underpiete information also increases (since
“SP(CIl) > SR(CI)", and the average scoring probability 8SP,(CI) + (1-0)-SP(CI)"). The
average scoring probability is also increasing imder incomplete information, but it reaches
a maximum of 0.7826 whert‘= 0.6053, and keeps that level for all valueséthat exceed

that number.

Figure 2: Average scoring probabilities (two-stratgy model)

0,784

0,783
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0,777

0,776

0,775

0,774 =

0,773 T T T T T T T T T
0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 09 1
Theta

= = = Complete Information Incomplete Information

4.2. Three-strategy model

If we now turn to the three-strategy model devetbm section 3, we can also illustrate
its results using the set of parameters that wéieapm the previous sub-section of this paper.
We will additionally need a value fqrp, which can also be the one estimated in Coloma
(2007). That value is|l; = 0.88', which, together with the values reported in sgation 4.1,

implies that under complete information:

. 0.94- 0.48 06052 - v = 0.98- 0.48 - 0.657¢ -
' 0.98+0.94 0.68 0.48 ' ' 0.98+0.94 0.68 048
088! (094- 048)

n, =
27 (098- 068) (094 048) + 088[(098+ 094— 068- 048)

=0.5017
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(098- 068)[ (094 049)

c,= =0.1710
(098— 068) ({094 048) + 088(098+ 094 068— 049)
- 098! (094- 048) + 088[ (098- 094) 06024
27 (098- 068) (094 048) + 088098+ 094— 068 048)
088! (098+ 094~ 068 048) + 068(048- 0981094 _ - o

27 (098- 068) (094 048) + 088[(098+ 094— 068- 048)

Given this, we can now calculate the expectedimsgoprobabilities for the three-

strategy complete-information games, which aregalewing:

SR(CI) = 098[094- 0681048 _ 07826
0.98+0.94-0.68-0.48

0881 [098[ (094— 048) + 094 (098- 068)]

SP(Cl) =
(C1) (098— 068) ({094 048) + 088(098+ 094 068— 049)

=0.7993

As we see, these results fulfill the rule foundaction 3, under whiciSP(CI) > SP(CI)".

If we now turn to the incomplete-information sitioa, we have two possible cases
depending on the fact thétis either greater than or less than 0.82895. Wifen 0.828953
(case AY, it will hold that:

n, = 0.94- 0.48 — 0.605¢ : v, = 0.98- 0.48 ~0.657¢ -
0.98+ 0.94- 0.68 0.48 0.98+ 0.94- 0.68 0.48
n2=0; 02:1; yA:O;
whereas, if ) < 0.82893 (case B), it will hold that:
c = (0.98- 0.68)1(0.94 0.48) _ 0.17:
2 (1-6)[{0.98- 0.68)1(0.94 0.48) 0.88 (0.98 094 068 0.48) -61 ’
vg =0.6024 ; Ys =0.0917 ; 6[n, + (1-6)Ch, = 0.5017

Besides, as we know from the results obtainedertian 3, ‘SP(IA) = SP(CI) =
0.7828, “SP(IB) = SP(IB) = SP(CI) = 0.7993 and “SPR,(IA) = u» = 0.88'. This implies that
the average expected scoring probabilities undemnptete information and under the two

incomplete-information cases are the following:

ASP(Cl)=0[D.7826+ (£0 J10.79¢ ; ASP(IA)=0[D.7826+ (10 J10.8

® This number comes from substituting the valuegofo, Py, Po andu, into the formula found in propositions 6
and 7, which are the ones that define the rangalaks off for which case A and case B equilibria can occur.
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ASP(IB)= 0.799:

As we can see from the formulae, once again thenipdete-information cases produce
some results that depend on the valué,dhat is, on the proportion of type 1 kickers tivat
have in the population under analysis. Figure 3adgphe values of, andyy that we obtain as
equilibrium values for all possible levels @fand in that figure we can see tleatends to its
complete-information level whefitends to zero, and becomes equal to oné ¥ 0.82895.
The value ofyy, correspondingly, jumps from a value equal to strategy chosen for a
complete-information situation where the goalkedjpees kicker 2y = 0.0917) to a value
equal to zero, and this also occurs wheir 0.82895.

Figure 3: Equilibrium strategies under incomplete nformation (three-strategy model)
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Correspondingly, figure 4 depicts the averageisgagprobability under complete and
incomplete information for all possible levelséfin it we see that, unlesg < 0” or “0 = 1”,
the average scoring probability is higher undeoimplete information. We also see that, when
6 increases, the average scoring probability undenpiete information decreases (since
“SPR(Cl) < SRB(CI)", and the average scoring probability is equal“®SR(Cl) + (1-

0)-SP(CI)"). The average scoring probability is also dedrasin 6 under incomplete
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information if “9 > 0.82895, but for the levels of) that are below that threshold it is constant

and equal to the maximum possible average scorivigapility (i.e., ‘ASP(Il) = 0.7993).

Figure 4: Average scoring probabilities (three-stréegy model)
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5. Empirical illustration

The numerical examples that we have built in trevipus section, although based on
parameter values estimated using real data, areanttie empirical illustration of our
incomplete-information models, since they justttfind out the equilibrium values for those
models under certain assumptions. In this sectienwwil get closer to an empirical application
of the models using some data reported in four Bogbistudies about the penalty-kick game,
and we will try to see if the use of an incomplet®rmation approach can be helpful to
improve the results of an equilibrium estimatiomeTexercise, however, will fall short of an
actual empirical estimation of an incomplete-infatian model, basically because we will not
use the original data which are the source of thpiecal studies, but only some descriptive
statistics that we will take as estimates of theeaulying strategies and parameters of the

model. The aim of this illustration, therefore, wilot be to test an incomplete-information
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model but simply to show a possible approach tgptisblem of estimation of such a model in
four particular situations.

The empirical studies that we will use as a sodozeour illustrations will be the
already cited papers by Chiappori, Levitt and Getsse (2002) and by Palacios-Huerta
(2003), plus two more recent studies by Bar-Elakt(2007) and by Baumann, Friehe and
Wedow (2011). The first two of those studies giveorsy evidence in favor of the
reasonableness of the complete-information NasHhilegum as a solution for the penalty-kick
gamé, while the third one questions that evidence amihtp out a possible problem
concerning the relatively small frequency that geapers choose to stay in the center of the
goal. The study by Baumann, Friehe and Wedow, lfinaloes not test the complete-
information model but presupposes its validity, &sts the hypothesis that an increase in the

guality of the kickers induces them to choose thatural side more often.

Table 3. Information from penalty-kick studies

Concep CLG (2002 | PH (2003 BEA (2007 | BFW (2011
Average n 0,4488 0,4980 0,3917 0,4374
Average 0,172: 0,075( 0,286 0,158:
Averagev 0,566¢ 0,531( 0,444 0,543¢
Averagey 0,0240 0,0170 0,0629 0,0110
Implied ny 0,9437 0,9648 1,0000 1,0000
Implied o 0,8992 0,9443 1,0000 1,0000
Implied 0,8418 0,8820 0,9304 0,6537
Implied Ry 0,6320 0,7120 0,7460 0,4922
Implied Fo 0,440( 0,552( 0,704C 0,356¢
Average Scoring Ra 0,749( 0,801( 0,853( 0,735

On table 3 we present a few data gathered frometlieur studies, which have been
“translated” into our terminology of strategies ¢, v, y) and scoring probabilitiest(, 7o, x,
Pn, Po)®. Of course, the numbers reported are not nechsshae actual strategies and
probabilities but the average frequencies with Whilse players have chosen the different
options (NS, OS and C) and the average scorings riitat occurred under the different
combinations of those options. We also report thgregate average scoring rates that

correspond to the samples used in each of theestudis the reader can imagine, “CLG”

” In another paper that we already cited in seatiofColoma, 2007), we have developed additionas tescheck
for the validity of the complete-information Nasudibrium concept, but the data used are the strae the
ones used by Chiappori, Levitt and Groseclose (R002

8 In three of the four cases the calculations wetatively easy, because the studies reported eitieeactual
frequencies and rates or the actual number of stesded to calculate those rates. For the cadeedftudy by
Baumann, Friehe and Wedow, conversely, we had pdyapvery indirect method to detect the impliedring

rates in each of the strategy profiles.

25



means Chiappori, Levitt and Groseclose, “PH” md@akcios-Huerta, “BEA” means Bar-Eli
et al., and “BFW” means Baumann, Friehe and Wedow.

Using the scoring rates that appear on tablei8,réglatively simple to calculate which
would be the average Nash equilibrium strategias players would have chosen if they had
played in a complete-information environment. Thase the ones predicted by equations 15,
16, 17 and 18, depending on the fulfilment of @égural4. To check this last condition it is
necessary to calculate what we can call a “criti¢akhat would be the maximum level pf
under which we can expect the occurrence of aicesirrandomization equilibrium. The first
rows of table 4 show those complete-informationildznium strategies implied by the four
studies under analysis, together with the corrediponcritical x and the implied average

scoring probability (ASP).

Table 4. Equilibrium results under complete and inomplete information

Concept CLG (2002) PH (2003) BEA (2007) BFW (2011)
Complete information

Critical p 0,7400 0,8030 0,8633 0,7163
Implied n 0,4881 0,5178 0,4692 0,5588
Implied ¢ 0,180" 0,148 0,128: 0,000(
Impliedv 0,594 0,593¢ 0,504 0,558¢
Impliedy 0,0991 0,0762 0,0629 0,0000
Implied ASP 0,7584 0,8148 0,8719 0,7163
Incomplete informatio

Estimate 0 0,936 0,972¢ 0,834’ 0,841¢
Implied ny 0,4791 0,5121 0,4692 0,5196
Implied rp 0,0000 0,0000 0,0000 0,0000
Implied ¢ 0,1162 0,0489 0,1455 0,0000
Implied ¢ 1,0000 1,0000 1,0000 1,0000
Impliedv 0,639 0,629¢ 0,504 0,558¢
Impliedy 0,024( 0,017( 0,062¢ 0,000(
Implied ASF 0,757¢ 0,810z 0,871¢ 0,706¢

If we now compare the complete-information equilim results from table 4 with the
information reported on table 3, we can see sonikdrgj similarities but also some important
differences, which may cast some doubts about bilgyaof the complete-information model
to explain the players’ behavior. The implied ageracoring probabilities, for example, are
very similar to the actual average scoring ratethenfour cases. The implied valuescofor
the CLG study, ofn for the PH study, and of for the BEA and BFW studies are also
extremely similar to the average values reportedatate 3. Conversely, we can see that the

calculated complete-information equilibrium predighplied values for the parameters that are
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very different to the reported average valuestierdases of the parametarandc in both the
BEA and BFW studies, for the parametersy andy in the PH study, and also for the
parameter in the CLG study. Moreover, the complete-informaatimodel predicts that the
equilibrium in the BFW study should be one of nestd randomization (since the critigals
larger than the parameteimplied by the data), but we nevertheless obsarkdatively large
fraction of kicks that were actually shot to thetes of the goal by the kickers in that sample.

Some of these divergences can be partially exgihimsing a few easy incomplete-
information assumptions like the ones made to dateua new set of implied parameters
(which are the ones that appear in the last rowalié 4). For the CLG case, for example, we
have assumed that kickers are actually of two typgee-2 kickers strictly prefer to shoot to
the center of the goal, while type-1 kickers choaseixed strategy that combines NS, OS and
C with positive probability. To match the data dre tobserved choices of NS, we had to
assume a certain distribution of the types (thdirfesed #”), and based on that we also
estimated a certain value for the implied parameterThe parametep, conversely, was
supposed to be equal to the observed average faltieat parameter, while was estimated
as the value that made type-1 kickers indifferetteen choosing NS, OS and C.

The same methodology for defining the two typekiokers were used to match the
data reported in the PH and BEA studies. For th&vBstudy, however, we had to use a
different approach to conciliate the predictiontb& complete-information model (that on
average it was not optimal for the kickers to cleo@$ with the data that show that 15.82% of
the kicks were actually shot to the center of tbalgin order to solve that puzzle, we assumed
that in this case type-1 kickers were players wkoen chose C and type-2 kickers were
players who always shot to the center of the ydalese assumptions allowed us to estimate a
certain value fo#), but obliged us to assume that the implied vatwe vas equal to zero. This
last feature does not exactly match the data (dineeaverage in the BFW study is 0.011),
but it helps us to explain how it is possible ttiedre is such a large fraction of kickers that

choose C in equilibrium while almost no goalkeapewilling to stay in the center of the goal.

6. Final remarks

The main conclusions of this paper have to do whthidea that, in some cases, the

outcomes of a situation in which a soccer goalkeégees a kicker at a penalty kick can be

° Of course, this implies assuming that type-2 kisk@re players whose scoring probabiliies wherotihg NS
or OS are completely different (lower) than the ©aesociated to type-1 kickers. This lower scoprapabilities
are never observed, since type-2 kickers alwayss#h€ instead of NS or OS.
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better explained as the result of an incompletermftion game. In those cases, the relevant
solution concept is no longer the mixed-strategysiN&quilibrium of the game but the
corresponding Bayesian equilibrium, since at lesms of the players (e.g., the goalkeeper) is
facing uncertainty about his opponent’s type.

In the simplified models that we presented, wetbag under incomplete information,
the typical situation is that at least one of theyer’s types (i.e., one of the kickers) chooses a
pure strategy instead of a mixed strategy. Thisicghowhich is almost impossible in
equilibrium under complete information, arises hesea that type of kicker is actually
responding to a strategy that the goalkeeper hagmkd for a different type of opponent.
Being unable to distinguish among the differentegpthe goalkeeper has to play the same
strategy against every opponent, and this is whyestypes of kickers may prefer a pure
strategy. When we mix the strategies played bydtfierent kickers, however, we end up with
a sort of “average kicker strategy” with differgmbbabilities for the available pure strategies,
and this average strategy has to be such thatodl&egper is indifferent between playing the
pure strategies that he mixes when he choosesvnidest response to the “expected kicker”.

In the three-strategy model presented in sectiome3also have cases in which one of
the kicker’s types plays a “restricted mixed siygte(e.g., one that randomizes between NS
and OS) while the other type plays a “full mixedattgy” (i.e., one that randomizes among
NS, OS and C). We can also end up in a situatiomhith one of the kicker’'s types plays a
restricted mixed strategy and the other one playsra strategy, and the goalkeeper chooses a
restricted mixed strategy himself (which is the tbe=sponse to the kicker who plays the
restricted mixed strategy). This last case prodticesapparently paradoxical situation that, in
equilibrium, the goalkeeper never chooses the caftihne goal while one of the kicker’s type
always shoots to that place.

The relative lack of information that the goalkeefaces in a situation of incomplete
information makes that the average scoring proligkd higher than under a situation of
complete information, which is equivalent to sagtflon average, the kicker is better off under
incomplete information and the goalkeeper is war§eThis feature can therefore be used to
find the “value of information” in this game. As @geepers’ payoffs are the complements of
the scoring probabilities, the value of knowing tinee characteristics of a kicker can be
measured as the difference between the expectathgagorobability under complete and
incomplete information. This difference is smalifewe are in a situation in which uncertainty
is small (i.e., when the parametgrwhich measures the distribution of the kickeypets, is

very close to zero or to one) and becomes largemwie approach the level 8fwhere the
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Bayesian equilibrium of the game changes from éase case B. The difference will also be
larger if the different types of kickers are “malifferent” among themselves.

Another virtue that the incomplete-information eggch could have is to solve some
puzzles that the empirical literature on penaltgkkihas discovered. Indeed, we have seen on
section 5 that the Nash equilibrium concept perfoguite well to explain some phenomena
observed in a number of empirical studies abougipgikicks, but that some other features are
hard to explain using a complete-information apphoaThis is particularly true for the
relatively widespread fact that concerns shotsh denter of the goal, which are typically
more common than what a complete-information Naghliérium predicts. This phenomenon
has been analyzed by Bar-Eli et al. (2007) as skme=s of the game-theoretic approach to
penalty kicks, and it has been explained by theskass using an alternative approach (called
“norm theory”) derived from psychological economid$e essence of that approach is that
goalkeepers are not actually minimizing an expestaating probability but following a social
norm that prescribes a certain action (jumpindhright or to the left) instead of a situation of
“inaction” (i.e., staying in the center of the gpaf the “social penalty” for choosing C when
the kicker chooses NS or OS is higher than thereoceived for choosing NS or OS when the
kicker chooses C, then a goalkeeper may prefetacnohoose C in any situation, although he
knows that he can reduce the expected scoring pilapaby choosing the center of the goal
instead of jumping to one of its sides.

By introducing incomplete information, however,etrsituation described in the
previous paragraph can be explained as the resatgame-theoretic equilibrium. Without
recurring to psychological arguments, we have skehit can be optimal for a goalkeeper to
randomize between NS and OS although he knowsatlqadbup of kickers will always choose
C, provided that such a group of kickers is reltivsmall. We have also seen that it is
possible to think of certain Bayesian equilibriuatusions in which the goalkeeper randomizes
among NS, OS and C, and the different types ofétlchoose more restricted mixes (e.qg.,
between NS and OS) or even pure strategies.

The main analytical problem of introducing incontplénformation into the penalty-
kick game may perhaps be its extreme capacity tochrthe data. Indeed, if we build a game
of incomplete information that postulates more thaa types of players and we arbitrarily use
different probabilities for those types, then weildoprobably explain any dataset on penalty
kicks as a result of a particular Bayesian equditor If that is the case, then many of the
empirical tests that the penalty-kick game-theordterature has designed could become

useless, since it would actually be impossibleistirtjuish between a Bayesian equilibrium
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and a situation in which the players are not chrapsheir strategies rationally.

We nevertheless believe that the Bayesian equihibiconcept also opens the door for
new possible empirical estimations of the penaltglgame, especially in cases in which it is
not clear whether the goalkeepers know their oppthaypes. This is particularly true for
situations in which the expected incomplete-infotiora solution is markedly different from
the expected complete-information solution, andeesply when we can somehow divide a
sample of penalty kicks into different types ofkdcs®. In those cases, it could be possible to
contrast the predictions of the complete-informatitash equilibrium concept with the ones of
the incomplete-information Bayesian equilibrium cept, and also with other alternative
concepts that are foreign to the game-theoreticomu.
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