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2 CREDIT DERIVATIVES
1. INTRODUCTION

Credit derivatives have attracted much attention in recent years, and are clearly a major asset class. A
range of models has recently been developed to price these instruments. The goal of this paper is to present
a modelling approach that is simple to implement, and is based on observables. The risk-neutral pricing
approach is adopted, providing an arbitrage-free model for credit derivatives.

There is a vast literature on credit modelling, which began with the insights of Black and Scholes [3].
Fundamental valuation of the risky debt in a firm was thoroughly explored by Merton [21]. This class
of models has now seen an extensive literature, as in Black and Cox [2], Bhattacharya and Mason [1],
Kim, Ramaswamy and Sundaresan [16], Nielsen, Saa-Requejo and Santa-Clara [22], Shimko, Tejima and
VanDeventer [24], Leland [18], Das [5], Huang [12], and Crosbie [4].

In a departure from the fundamental valuation of risky debt beginning with the designation of a firm value
process, models nowadays simplify the mechanics by modelling risky debt directly. These models, popularly
termed “reduced-form” models, have become widespread. There are three categories of these models (see
Skora [25]): credit rating models, default models, and spread models. The credit rating models depict default
through a gradual change in credit ratings over time, the mechanics being driven by a Markov transition
matrix of rating changes. Examples of this literature are the papers of Lando [17], Das and Tufano [6] and
Jarrow, Lando and Turnbull [14]. Default models define a stochastic process for default occurrence, such as
in the models of Jarrow and Turnbull [15], Longstafl and Schwartz [19], Duffie and Singleton [11], Duffie and
Huang [9] and Duffie, Schroder and Skiadas [10]. Finally, spread models directly posit a stochastic process
for spreads, such as in Ramaswamy and Sundaresan [23], Madan and Unal [20], Longstafl and Schwartz {19,
Duffee [8], and Das [7].

This paper offers a consolidated approach to reduced-form models, providing simple implementation
mechanics. In contrast to term structure models for riskless debt, involving a parsimonious number of
parameters, risky debt models require more information, all of which is not easily available. Moreover, the
information is often not easily observable. The objective of this paper is to provide a model which may be
implemented with as little information as possible, all of which is available.

The model begins with information on the term structure of riskless forward rates, and the term structure
of credit spreads. The associated term structures of volatility of rates and spreads allows the development of
an arbitrage-free bivariate tree using the Heath-Jarrow-Morton {13] technology. The values on this tree are
then decomposed into default probabilities and recovery rates using a logit equation. Recursive equations
provide additional information such as the cumulative default probabilities needed for pricing certain types
of credit derivatives.

The computer model implements a multidimensional recursive equation system consistent with the absence
of arbitrage. This paper provides a discrete-time model along the lines of Duffie, Schroder and Skiadas [10],
and Duffie and Singleton [11]. While these papers allow for stochastic processes for default, recovery and
discount factors, our paper models first the stochastic processes for riskless interest rates and spreads using
the observable term structures of rates, spreads, and their attendant volatilities. Rather than positing the
martingale measure, our implementation solves for the correct risk-neutral drifts of the stochastic processes
to make credit-risky securities martingales after discounting. In discrete-time, this results in a bivariate
lattice. We expand the information at each node on this bivariate lattice to determine default probabilities
and recovery rates consistent with credit spreads. Since this information may result in path-dependent
derivative security prices, such as occurs with the process for cumulative default probabilities, the recursive
implementation of the paper offers a facile method by which to implement the model in an arbitrage-free
way.
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Our model provides some distinct advantages. First, easy handling of American features in the pricing
of credit derivatives is possible. Second, the path-dependence injected by default events is rendered compu-
tationally tractable. Third, the model uses less computer memory than standard implementations. Fourth,
the model is consistent with the observed forward curves for interest rates and spreads.

Thus, the model prices credit risky securities in an arbitrage-free environment using readily available
observable inputs. The following is the structure of the paper. Section 2 describes the model. Section 3
computes the risk-neutral process for interest rates, and Section 4 computes it for credit spreads. Section 3
contains the engineering details of the model. The conclusion is in Section 6.

2. THE MODEL

The model is developed in discrete time, since a computer implementation for options with American
features and path-dependence is envisaged. We consider an economy on a finite time interval [0, 7*]. Time
periods are denoted by (¢,T) € [0,T*]. The discrete interval between dates is denoted h. A forward rate is
defined as f(t,T) which is the rate determined at time ¢ for a lending transaction over the interval (T, T+ h).
Thus f(¢,T) denotes the one-period forward rate at time T in the future as seen at time t. The process for
forward rates in the economy is depicted by the discrete model below:

flt+h,T) = f(t,T) +a(t,T, f(t, T)h +o(t, T, ft, T)X1Vh, VT

where «(t, T, f(¢,T)) is the drift which may be a function of current time, future forward rate time, and
the level of the forward rates. The volatility coefficient o(¢, T, f(¢,T)) has a similar interpretation. X, is
a binomial random variable taking on a value of either +1 or —1 with equal probability. Of course, the
analysis in this paper will accommodate any choice of random variable for X;. We assume a fully observable
vector of forward rates at current time ¢, i.e. f(¢,T) exists for all T. The “spot” rate of interest is defined
to be r(t) = f(¢,¢).

The pricing of bonds with default risk is driven off an existing term structure of credit spreads. We assumne
that a fully observable vector of forward spreads is available at time t. We denote this vector s(t,T),VT.
The spreads also follow a process on the interval [0, 7*] which is as follows:

s(t+h,T) = s(t,T) + B(t, T, s(t, T))h + n(t, T, s(t, T)) XoVh, VT

where 3(¢, T, f(¢,T)) is the drift and n(¢, T, f(¢,T)) is the volatility coeflicient, which may be a function of
current time, future forward spread time, and the level of the forward spreads. X5 is a binomial random
variable taking on a value of either +1 or —1 with equal probability. Both random variables X; and X5 are
governed by a probability measure denoted P.

The spreads represent the cost of default, and are functions of the probability of default, denoted A(t), vt
and the recovery rate in the event of default, denoted ¢(t),Vt. The recovery rate states the fraction of the
current price of the risky bond that is recovered. We shall denote the price of the risky bond as F(r,s, 1)
where 7 is the remaining time to maturity of the bond. Likewise, we shall denote riskless bonds as P(r,7),!
since these securities are not functions of the credit spread. In the event of default at time ¢, the amount
recovered is a proportion of current bond value, i.e. ¢(t)F(r,s,7), where 7 = T — ¢, and T is the bond’s
maturity date. This convention is referred to as “recovery of market value” (RMV), as detailed in Duffie
and Singleton [11].

The model’s objective is to develop a risk-neutral lattice for pricing risky debt. This is undertaken in two
steps: (a) First, the riskless interest rates lattice is generated, by solving for the risk-neutral drifts so that all
interest rate sensitive securities are martingales. This ensures the lattice if free from arbitrage. (b) Second,
a lattice for credit spreads is superimposed on the first lattice, so as to implement the pricing of risky debt.
Risk-neutral drifts are computed for the spread process so as to make the discounted prices of risky debt
martingales.

IThis is not to be confused with the probability measure P.



4 CREDIT DERIVATIVES
3. RISK-NEUTRAL PROCESS FOR INTEREST RATES
We assume the existence of a risk-neutral measure under which the prices of securities are martingales.

We shall denote this as measure @ in order to distinguish it from the physical probability measure P. In
order to derive the risk-neutral process, we proceed as in Heath, Jarrow and Morton {13].

We define a money market account to be the balance of an accumulation account accruing value from
time t = 0 continuously at rate r(z) :

B(t) = exp Z r(ih)h

The riskless bond is defined by the pricing equation
r
P(t,T) =exp |— > f(t,ih)h
=%

Under the @ measure, all discounted asset prices will be martingales, and so

PtT) P(t+h.T)
By 7 (B(t+h>>
. [P{t+hT) B()
- 1_EQ< P@t.T) B(t+h,)>’

We can compute the components as follows:

r_g r_q
3

% = exp _i:’"L+1f(t+}L,ih)h exp zf(t,ih)h
- £y
= eXp g~ (f@+h,ih) — f(t,ih) h 5 + f(t, )R],
L\ =g+
and
i t-1
B(}tga—)h) = exp izor(z’h)h exp —;r(ih)h
= exp[r(t)h]
= exp[f(t,t)h].

x 1 1
Eq |exp{ — > [f(t+h,ih) — f(t,ih)] A =1
=5 +1 ]
71 1
Eg |expg — Z [a('ih)h—krr(z'h)Xl\/ﬁ]h = 1
i=4+1 ]
51 i1 1
Eg |exp( — Z a(ih)h? exp{ — Z o(ih) X1 Vhh = 1
i=f+1 i=4+1 ]
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which finally results in

-1 |
, 1 .
Z a(th) = ﬁln Eg |exps — Z o(ih) X Vhh
i=F4+1

i=Lt+41
which is a recursive equation defining the risk-neutral drift terms «(ih).

4. RISK-NEUTRAL PROCESS FOR DEFAULT SPREADS
4.1. Martingale Dynamics. In this section, we derive the risk-neutral process for forward spreads [s(¢, T')]
and “stitch” it on to the term structure of riskless interest rates derived in the previous section. This results
in a bivariate system [f(¢,T), s(t, T)] off which risky debt may be priced.

The time ¢ price of a risky bond maturing at time T is given by

"
w1

F(t,T) =exp — Y [f(t,ih) + s(t,ih)] h

L
=

We define a “credit-adjusted” money market account [B*(t)] to be the balance of an accumulation account
accruing value from time ¢ = 0 continuously at rate r{(¢) + s(¢,t) :

+-1
B*(t) =exp{ » _ [f(ih,ih) + s(ih,ih)] h
i=0
Under the @@ measure, all discounted asset prices will be martingales, and so
F@,T) F(t+hT)
——— = Eo|l—mt
B*(t) B*(t+ h)
F(t+ h,T) B*()
1=F
= Q ( F.T) B(+h
We can compute the components as follows:
F(t+h.T) L
t+hT : . .
W = exp|— Z [f(t"‘h’lh) +S(t+h,lh)]h
i=4+1
Loq
X exp Z [f(t,ih) + s(t,ih)| h
=t
-1

exp | = > [f(t+ h,ih) + s(t + h,ih) — f(t,ih) — s(t,ih)]
i=f+1

X exp [£(t )h + s(t, )]
and

_B__’éé(;:_)_h_) =exp [f(t,t)h + s(t, t)h]

[*1}
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Therefore, from the martingale restriction we arrive at

g

Eq |expq — > [f(t+h,ih) + s(t + h,ih) — f(t,ih) — s(t,ih)] h =1
i=f4+1 ]
F-1 |

Eq |exp{ — > |a(ih)h + B(ih)h + o(ih) X1Vh + n(ih) XoVh| b = 1
z:%—i—l .

which finally results in

o . o

> (i) + B(ih)] = 15 In | Eq |exp{ ~ > lo(ih) Xy +n(ih) Xy hVR

=f£4+1 i=t41

which is a recursive equation defining the risk-neutral drift terms «(ih) and 3(¢h). Since «(ih) has already
been computed, it is simple to solve recursively for 5(ih).

4.2, Correlation of forward interest rates and forward spreads. Empirically, it is known that spreads
and interest rates are usually positively correlated. In addition, the degree of correlation tends to increase as
the quality of risky debt declines. Imposing correlation on the random variables in the system above is fairly
simple. We adopt a specific structure for random variables [X, X»]. Under the @ measure, we shall as-
sume that the bivariate process takes values as follows: [X1, Xo] = {(+1,+1), (+1,-1),(-1,+1), (-1, -1)}.
Further, we set the probabilities equal to {%3, 1—23, —1—}3, 1—“;3} It can be readily checked that this yields a
system in which the two processes are correlated with coefficient p. In general, since this set up applies at
all times ¢ € [0,T*], the coeflicient of correlation may be a general function, i.e. p(r, s, t).

4.3. Components of the Forward Spread. Credit spreads may be delineated as functions of two influ-
ences: (a) the risk-neutral probability of default in time interval h (denoted A(.)h), and (b) the risk-neutral
recovery rate in the event of default (denoted ¢(.)). The probability of default must decrease as the time
interval h shortens. Recovery may be expressed as a function of the face value of the instrument, its current
traded value just before default, or as a percentage of another reference instrument. Duffie and Singleton
[11] propose that recovery be a proportion of market value (denoted RMV for short). We shall see that the
RMYV convention is consistent with the bivariate model developed above.

Recall that the price of a one-period risky bond in the bivariate model is
F(t,t+h) =exp{~[f(t,t)+ s(t, )] h}.
This must also equal a set of risky cashflows discounted at the riskless rate of interest
F(t,t+ h) = exp{—f(t,t)h} [A(t, ) he(t, t) + 1 — A(t, t)h]
where A(t,t)he(t,t) is the probability of default times the recovery amount, and (1 — A(¢,t)k) 1 is the proba-
bility of no default times 1, the market value of the zero-coupon bond at maturity. Since X is decreasing in A,

as h goes to zero, the term A(¢, t)h¢(t, t)+1—A(t, t)h may be written as e~ M&OA1=0(t0] (per Duffie-Singleton,
from the property that e™® ~ 1 — z, for z small). This results in the equation

F(t,t +h) = exp {—f(t,t)h — A(t,t)h [l — ¢(t, )]} .
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=1

This implies that s(¢,t) = A(t,t)[1 — #(¢t,t)]. Therefore, in general

n
1

F(t,T) = expq— > [f(t,ih) +s(t,ih)]h
= exp{ = 3 [F(tih) + A(t,ih) [1 - o(t,im)]] b

= expq — > [f(t,ih) + A(t,ih) [1 - ¢(¢, ih)]] A

= exp{ — > [f(t,ih) + A(t,ik) [1 — ¢(t,ih)]|h » F(T —h,T)

it
=

The last line shows that if the recovery is written as recovery of market value, we obtain a recursive relation
that allows us to directly price risky bonds directly off the forward curves for interest rates and spreads.

4.4. Decomposition of the Spread. The one-period forward spread s(t,t; =) summarizes the market’s
expectation of future default probabilities and recovery rates over one period at time ¢ in the future. (Here,
w depicts the random outcome on the state-space). Without additional information, it is not possible to
decompose the spread into these two fundamental components. We already have one equation for spread
decomposition, i.e. s(t,t,@w) = A(.,w) [l — ¢(t,t,=)]. Any additional equation will allow us to solve for the
two components A(., @), (¢, t, ). In keeping with the spirit of this paper, a readily observable means of
identification is desirable.

One simple approach is to define A as a function of the level of the forward interest rates and spread
curves, i.e. A(f,s), where f,s stand for the entire forward curves. Since A is a probability, to ensure that it
resides on [0, 1] we choose a function that has a range in that interval. The logit equation A(r, s) = —ge—+—3 T =

ap + b'f + ¢'s € (—o0, +00) is one simple choice of default probability function. Since limg o, (—i—) =1

er+1
and hmg | _ (%) = 0, this satisfies the range requirements. Essentially, we can find the function for A by

means of a logit regression. Once this has been ascertained, for each outcome of (f,s) we have a corresponding
value of A. Given the value for A, the value for the recovery rate derives from ¢(t,t) = 1 — s(¢,t)/A. It is
clear from this expression that for ¢ € [0,1], we need to impose the condition that A > s. This may be
directly imposed in the logit regression or indirectly checked during computations of the model. The paper
by Wilson [26] provides strong support for this sort of model. He finds that a logit regression fits default
rates with adjusted R? values in the range of 80-90%.

5. THE ENGINEERING IMPLEMENTATION

This discrete-time model may be easily implemented on a lattice. The model is bivariate, and the state-
space described in section 4.2 is a simple implementation approach. This leads to a branching process
with four branches emanating from each node. Once the risk-neutral drifts a(.), 3(.) have been computed,
the values of the forward curves for interest rates and spreads under the martingale measure are available.
Given the curves [f(¢,T), s(t, T)] we may also compute the one-period default probability A (using the logit
equation) and the recovery rate ¢ at each node on the lattice. Therefore, at each node on the lattice we
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have information related to all three risks involved in the valuation of risky debt: interest rates, default
probabilities and recovery rates. The use of the HJM model also ensures that we have the entire forward
curve for riskless rates and spreads at each node. The lattice with its components appears as follows:

[fuy Sus )\uua d’uu]

[fu7 Sd) /\udv d)ud]

(f,S, )\(]))

[fda Sus /\dua (/‘)du]

[fd, Sds Mdd> Paq)

5.1. Lattice Enrichment. In addition, the computation of the following values makes for efficient imple-
mentation.

1. At each node, we compute state prices, which we denote w(t, @), for every random occurrence (w) at
each time t. State prices may be computed recursively by means of the following equation:

w(t + h,w) = w(t) exp[—r(t)h] x prob(=), w(0) = 1.

Here, w represents the random choice of one of the four branches of the lattice at each node at time
t. The advantage of computing state prices derives from the fact that it makes it easy to compute the
price of a derivative claim by generating payoffs on the lattice and directly multiplying these by the
state prices and aggregating the values.

2. Cumulative probabilities of default. We denote these values as A(t). Since A(t) denotes the one-period
forward probabilities of default, the following recursive equation describes the evolution of cumulative
default probabilities.

(5.1) At + h,w) = A(t) + (1 — A@)| AR, =)k, A(D) =0.
The interpretation of w is the same as that for state prices above. The recursive equation ensures that

A(t) and A(t) exist on the support [0, 1].

With the computation of these additional values, the lattice is enhanced to include cumulative default
probabilities, and state prices. This provides all the necessary information for pricing a range of credit
derivatives. The branching lattice now appears as follows:
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[fu7 Sua )‘uuﬂ (/buu]

(wuua Auu)

[fua Sd, Aud; Q"ud]

(wudy Aud)

[fdy Sus Adus ‘«ﬁdu]

(u’duy Adu)

[fd, 8d, Add: Paq)

(waa, Ada)

5.2. Lattice Computation via Recursion. Generating the lattice requires careful computation. A pop-
ular method is to use a recursive algorithm. A recursive algorithm is a function that calls itself repeatedly.
Option pricing uses a recursion scheme quite naturally because on a lattice, the value at any node is a
function of values at future nodes. Recursive algorithms provide two simple benefits: first, the program code
is parsimonious, and second, the recombination of branches on the lattice is not an issue. The recursive
algorithm simply follows each sample path to its conclusion. However, when a satisfactory recombination
scheme is available, a recursive algorithm may be inefficient, because it misses the opportunity to optimize
the lattice for speed. We describe the recursive algorithm in some detail.

Recursion is available since the lattice satisfies no-arbitrage conditions at each node. Hence, each subtree
on the lattice may be treated separately. Knowledge of the values [f, s, A, ¢, w, A](¢) allows direct extension
into the next period’s nodes [f, s, A, ¢, w, A](t + h,w). Since the recursion allows path dependent values to
be carried on the tree by forward induction, the value of any path-dependent derivative asset is easy to
compute.

We price some popular credit derivatives as an illustration. The following examples of pseudo-code using
Mathematica [27] demonstrates the programming technique.

5.2.1. Credit Spread Options. A credit spread option is a very simple credit derivative that is written on an
underlying credit spread. A call option on a credit spread may be defined as a contract that pays off at some
defined maturity if the spread is trading above a strike level (the exercise price). These options allow traders
to speculate on a view regarding the quality of a bond. They also benefit option writers since credit spreads
tend to be more volatile than interest rates, and hence the premiums on these options are rich. Furthermore,
spread volatility declines rapidly towards bond maturity, making time decay an attractive feature for spread
option writers.
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Pricing this derivative is simple. The payoffs are generated on the lattice at maturity by comparison of the
spot spreads with the exercise level, and then discounted back appropriately. The code for this is provided
below.

1 (* Program to generate the HJM Tree with default risk recursively *)}
2 CRD[fO_,fsig0_,sO_,ssig0_,rho_,h_,exprice_,a_,b_,c_]:=Module[}

3 {n,puu,pud, pdu,pdd},}

4 n=Length[£0];}

5 puu=(i+rho)/4; pdd=puu; pud=(1-rho)/4; pdu=pud;}

6 CRVAL[level_,f_,fsig_,s_,ssig_,cumdef_]:=}

7 CRVAL[level,f,fsig,s,ssig,cumdef]=}

8 Module[{i,m, j,alpha,beta,fuu,fud,fdu,fdd,suu,sud,sdu,}

9 sdd,fsigma,ssigma,pd,recov},}

10 If[level==n-1, (*careful about n or n-1 *)}

11 result=Max[0,s[[1]]-exprice] *100;}

12 1; %

13 If [level<n-1,}

14 m=Length[f]-1;}

156 fuu=Take[f,-m]; fud=fuu; fdu=fud; fdd=fdu;}

16 suu=Take[s,-m]; sud=suu; sdu=sud; sdd=sdu;}

17 fsigma=Take [fsig,-m];}

18 ssigma=Take[ssig,-m];}

19 alpha=Table[0,{k,m}];}

20 beta=Table[0,{k,m}];}

21 For{j=1, j<=m, j++,}

22 Iffj==1,}

23 alphal[j]l]=Logl[0.5*(Exp[~fsigmal[j]]*h*Sqrt[h]]+}

24 Exp[fsigma[[j]]*h*Sqrt[h]])]/h"2;}

25 betal[jl]=Loglpuu*Exp[(-fsigmal[[j]]-ssigmal[j]])*h*Sqrt[h]]+}
26 pud*Exp [(-fsigmal[[jl]+ssigmal[j1])*h*Sqrt[h]]+}

27 pdu*Exp [(fsigmal[jl]-ssigmal[j]1]1)*h*Sqrt[h]]+}

28 pdd*Exp [(fsigmal[j]]+ssigmal[j]])*h*Sqrt[h]1]/h~2-}

29 alphal[j11;}

30 15}

31 If[j>1,}

32 alphal[jl]=Log[0.5%}

33 (Exp(-Sum[fsigma[[k]],{k,j}]*h*Sqrt[h]l]+}

34 Exp[Sum[fsigmal[k]],{k,j}]1*h*Sqrt[hl1])1/h~2-}

35 Suml{alpha([k]],{k,j-1}1;}

36 betal[jl]l=Log[}

37 puu*Exp [Sum[(-fsigmal[j]]-ssigmal[j]])*h*Sqrt[h],{k,j}11+}
38 pud*Exp [Sum[(-fsigmal[[jl]+ssigma[[j]])*h*Sqrt[h],{k,j}]11+}
39 pdu*Exp [Sum[(fsigmal[[jl]-ssigmal[[j1])*h*Sqrt[hl,{k,j}]1]1+}
40 pdd*Exp [Sum[(fsigmal[[j]]+ssigmal[j]])*h*Sqrt[h],{k,j}111/h"2-}
41 Sum[alpha[[k]],{k,j}]-Sum[betal[k]],{k,j-1}1;}

42 1;%

43 1}

44 fuu=fuu+alpha*h+fsigma*Sqrt[h];}

45 fud=fud+alpha*h+fsigma*Sqrt[h];}

46 fdu=fdu+talpha*h-fsigma*Sqrt [h];}

47 fdd=fdd+alpha*h-fsigma*Sqrt [h];}
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48 suu=suu+beta*h+ssigma*Sqrt [h];}

49 sud=sud+beta*h-ssigma*Sqrt[h];}

50 sdu=sdutbeta*h+ssigma*Sqrt[h];}

51 sdd=sdd+beta*h-ssigma*Sqrt[h];}

52 cumd=(1-cumdef) *Exp [a+b*f [[1]]+c*s[[1]1]1]/(1+Exp [a+b*f [[1]]+cxs [[1]]]);}
53

54 result=Exp[-(£[[1]])*h]*}

55 (puu*CRVAL[level+1l,fuu,fsigma,suu,ssigma,cumd] +}
56 pud*CRVAL[level+1,fud,fsigma,sud,ssigma,cumd]+}
57 pdu*CRVAL[level+1,fdu,fsigma,sdu,ssigma,cumd] +}
58 pdd*CRVAL[level+1,fdd,fsigma,sdd,ssigma,cumnd]);}
59

60 J; (* end IF Level < n-1 %)}

61 Return[result] ;}

62 1;%

63  Return[CRVAL[O0,f0,fsig0,s0,ssig0,0]];}

64]

Two features of this code bear attention: (a) the use of recursive programming, and (b) the embedded
boundary conditions. The boundary condition is provided in lines 10-11. The contract is assumed to be
written on a notional value of $100 for this implementation. Lines 6 thru 62 contain the recursive code
function CRVAL. This code segment performs two distinct operations. First (in lines 21-43) it computes
the risk-neutral drifts using the closed form expressions for «(.), 5(.) from the paper. Second, the function
CRVAL calls itself recursively in lines 54-58. This recursive call exploits the feature that each subtree is
arbitrage free in and of itself. Lines 44-52 of the program set up the forward induction segment of the
program, while the lines 54-58 implement backward recursion. In line 63, the initial call of the recursive
function is made with the starting parameters of the model.

The recursive code has the advantage that the entire lattice need not reside in memory. If non-recursive
methods are used, the need to store the lattice in memory increases the computing hardware requirement.
The number of terminal nodes on the tree grows rapidly, and is 4, where n is the number of time steps.
For example, even when n = 7,47 = 16384, a considerable number of end-nodes.

3.2.2. Credit Default Swap. A credit default swap is another popular derivative security. In this swap, one
party pays a steady stream of payments in exchange for one single compensatory payment only in the event
of default of an underlying bond. The simplest form of this contract would be one where a single upfront
payment is made to purchase default insurance. The payoff on default may be a predetermined lump-sum
amount. [t may also be defined as the loss in value from par value of the bond.

Valuing this option on the recursive lattice requires information on cumulative default probabilities along
the sample path [A(¢)]. This in turn requires the one-period probabilities of default [A(t)]. As before, we
define the probabilities using a logit function: A(¢) = % The values of parameters a,b, ¢ are
determined empirically. If the underlying bond has n periods to maturity, then default is possible in any
of the periods. To value the credit default swap, we generate default payoffs based on the recovery rates
(¢) at all points on the sample path. These payoffs are multiplied by the “first-passage” default probability,
which is the probability of default conditional on no prior default. The first passage probability is given by
the expression [1 — A(£)]A(¢t). The payoff of the credit default swap is the loss on default, i.e. [1 — ¢(t)].
The spreads are defined as s{t,t) = A(¢)[1 — ¢(¢t)]. The expected cashflow to the derivative is given by the
first-passage default probability times the loss on default, which is

s(t,t)
A(t)

(1= ADIMD) x [1 - $(5)] = [1 — ADIAD) x 2 = [1 = A@)s(t, ).
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This is convenient since the recovery rate drops out of the expression (because 1 — ¢(t) = s(t,t)/A(t)), and
does not need to be computed in the program implementation. This expression is embedded in the program
below in lines 12 and 55 of the code.

1 (* Program to generate the HJM Tree with default risk recursively %)
2 CRD[fO_,fsig0_,sO_,ssigO_,rho_,h_,exprice_,a_,b_,c_]:=Module[
3 {n,puu,pud,pdu,pdd},

4 n=Length[f0];

5 puu=(1+rho)/4; pdd=puu; pud=(1-rho)/4; pdu=pud;

6 CRVAL[level_,f_,fsig_,s_,ssig_,cumdef_]:=

7 CRVAL[level,f,fsig,s,ssig,cumdef]=

8 Module[{i,m,j,alpha,beta,fuu,fud,fdu,fdd,suu,sud,sdu,

9 sdd,fsigma,ssigma,pd,recov},

10 If[level==n-1, (*careful about n or n-1 *)

11 pd={(1-cumdef)*Exp [a+b*f [[1]]+c*xs[[1]]]/ (1+Exp[a+b*f [{1]]1+c*s[[1]1]1]);
12 result=(1-cumdef)*s[[1]];

13 1

14 If[level<n-1,

15 m=Length[f]-1;

16 fuu=Take[f,-m]; fud=fuu; fdu=fud; fdd=fdu;

17 suu=Take[s,-m]; sud=suu; sdu=sud; sdd=sdu;

18 fsigma=Take[fsig,-m];

19 ssigma=Take[ssig,-m];

20 alpha=Table[0,{k,m}];

21 beta=Table [0, {k,m}];

22 For[j=1,j<=m, j++,

23 If[j==1,

24 alphal[[j]l1=Log[0.5*(Exp[-fsigmal[[j]]*h*Sqrt[h]]+

25 Expl[fsigmal[j]]*h*Sqrt[h]l]1)]/h"2;

26 betal[[jl]=Loglpuu*Exp[(-fsigmal{jl]l-ssigmal[j]l])*h*Sqrt[h]]+
27 pud*Exp{(-fsigma[[jl]+ssigmal[[j]])*h*Sqrt[h]]+

28 pdu*Exp[(fsigmal[j1]-ssigmallj]])*h*Sqrt[h]l]+

29 pdd*Exp[(fsigmal[j}]+ssigma[[j]1]) *h*Sqrt(h]l]]/h~2~

30 alphal[jl];

31 1

32 If(j>1,

33 alpha[[j]]=Log[0.5*

34 (Exp[-Sum[fsigmal[k]],{k, j}]*h*Sqrt[h]]+

35 Exp[Sum[fsigmal[k]],{k,j}] *h*Sqrt{hl])]/h~2-

36 Sumf{alphal[k]],{x,j-1}1;

37 betal[jl]1=Logl

38 puu*Exp [Sum[(-fsigma[[j]]-ssigma[(j]]) *h*Sqrt [h],{k,j}]1]1+
39 pud*Exp [Sum[(-fsigmal[[j]]+ssigmal[[j]1])*h*Sqrt{h],{k,j}]]+
40 pdu*Exp[Sum{(fsigmal(jl]-ssigmal[j]])*h*Sqrt[h],{k,j}]11+
41 pdd*Exp[Sum[(fsigmal(j]l]+ssigma[[j]])*h*Sqrt[h],{k,j}]]1}/h 2~
42 Sum[alphal[k]],{k,j}]-Sum(betal[k]],{k,j-1}1;

43 1;

44 1;

45 fuu=fuu+alpha*h+fsigma*Sqrt{h];

46 fud=fud+alpha*h+fsigma*Sqrt[h];

47 fdu=fdu+alpha*h-fsigma*Sqrt[h];



48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
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fdd=fdd+alpha*h-fsigma*Sqrt [h];
suu=suutbeta*h+ssigma*Sqrt [h];
sud=sud+beta*h-ssigma*Sqrt [h];
sdu=sdutbeta*h+ssigma*Sqrt [h];
sdd=sdd+beta*h-ssigma*Sqrt [h];
cumd=cumdef+(1-cumdef)
*Exp [a+b*xf [[1]]1+c*s[[1]11]/(1+Explatb*f [[1]]+c*s[[1]111);
result=(1-cumdef)*s[[1]1]1+Exp[-(£[[1]1])*h] *
(puu*CRVAL[level+1,fuu,fsigma,suu,ssigma, cumd]+
pud*CRVAL[level+1,fud,fsigma,sud,ssigma,cumd] +
pdu*CRVAL[level+1,fdu,fsigma,sdu,ssigma,cumd] +
pdd*CRVAL[level+1,fdd,fsigma,sdd,ssigma,cumd]) ;

1; (* end IF Level < n-1 *)

Return[result] ;

1;

Return[CRVAL[0,f0,fsig0,s0,ssig0,0]];

64]

Some further aspects of the program code elicit interest. The code in lines 53-54 implements the recursive
equation for forward induction of the cumulative default probabilities. The expression used is given before
in equation (5.1) of the paper. Lines 55-539 implement backward recursion where the function CRVAL calls
itself. Line 34 contains the expression for the one-period probability of default. In lines 56-59, the program
passes on the current value of the cumulative default probability to the function next period, so that it
can be carried ahead in time through forward induction. Since the cumulative probability of default has a
trajectory that is path-dependent, the use of the recursive method offers efficient implementation.

5.2.3. Numerical Ezample. We implement a simple example to demonstrate the model and the two segments
of code provided above. The implementation is undertaken using Mathematica [27]. The data used is as
follows:

T 7(0,T) o5 s(0T) o, p 1025
0 006 0.015 0.010 0.005 h 0.5
1 007 0012 0015 0.006 al| -4
2 008 0.011 0.020 0.007 b | 10
3 009 0.010 0022 0.008 c| 70

These parameters were used on the code above. Results are:

o Credit spread option: The option was struck at a strike spread of 0.015 with a maturity of 3 periods.
The notional value of the contract is $100. The price of the option amounts to $0.75, i.e. a premium

of 0.75%.

e Credit default swap: On a notional value of a dollar the default insurance premium computed is

$0.027, 1.e. a premium of 2.7%. The forward default probabilities were generated using the logit
e~ AFI0FLL, 1)+ T04(1,1;

ea b (L) Fes(t, )

function A(t) =
1.

Tfeatof(fiFent i)

= Tge-1+10F(t,1)FT0a(E,0) *

A plot of this function is presented in Figure

Thus, we can achieve a range of values from a zero probability of default to almost an 80% chance of
default. Since the recursive model results in parsimonious program code, the scheme in the paper should allow
for boundary conditions and other forms of payoff functions which only require minor program modifications.

The program code may be extended to value several other instruments such as total return swaps, floating
rate notes, auction-reset notes, spread-adjusted notes, etc., which are a small subset of the pantheon of credit
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FIGURE 1

linked securities that have been created over the past few years. Additionally, the code may be translated
into programming languages that compile and run faster, such as C++.

6. CONCLUDING COMMENTS

This paper develops a model for the pricing of credit derivatives using observables. The model is (i)
arbitrage-free, (ii) accommodates path-dependence, and (iii) handles a range of securities, even with Amer-
ican features. The computer implementation uses a recursive scheme that is convenient and seamlessly
processes forward induction and backward recursion, needed to compute more complicated derivative secu-
rities.

The model may be enhanced in many ways. It is possible to improve the recursive implementation using
improved computer science methods. That has not been the focus of this paper. Here, we attempt to simply
develop the arbitrage-free framework underlying the computer implementation. Once the bivariate lattice in
riskless rates and spreads has been developed, the spread itself may be decomposed into default probabilities
and recovery rates in many ways other than the one suggested in the paper. For example, information in
rating transition matrices may be employed instead of the logit regression. This paper leaves these rich
avenues of research for later work.
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