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Labor Mobility from Academe to Commerce
"Technology transfer is the movement of ideas in people.”

- Donald Kennedy, Stanford University, March 18, 1994

Following a breakthrough discovery, scientitic knowledge with natural excludability may
be best transferred to industry by the fabor mobility of top scientists from universities and
research institutes to firms. We model labor mobility as a function of scientist’s quality (as
measured by scientific citations) and his or her reservation wage. Labor mobility generally is
based on visible or easily obtainable signals of underlying labor quality, such as education (A.
Michael Spence 1973; 1974); labor mobility of top scientists is no different, but the signals
typically contain more differentiated information concerning current levels of output and more
evaluative information on the quality of that output. Returns to detailed monitoring of the
quantity and quality of scientists’ performance are sufficiently high to employers to offset the
costs involved.

In order to gain access to the knowledge of discovering scientists, firms in related areas
of technology employ them. In biotechnology, the discovering scientists were initially employed
by universities and research institutes; we are concerned with explaining the mobility processes
involving in moving at least part of their labor effort to specific firms. Some of these firms are
incumbent firms which adopt the new technology (see Zucker and Darby 1997, 1996a), but most
of the firms are newly created around these "star" scientists, who often become residual owners
as well as employees (Zucker, Darby, and Brewer 1997).

We investigate two somewhat different sources of labor mobility: the "classic” labor



mobility of changing employer from a university or research institute to a firm ("affiliated
scientists”), and the empirically more common labor mobility we observe when academic or
research institute scientists collaborate on joint research projects and/or patenting with a firm
("linked scientists"). Both kinds of mobility generally involve working at the bench science level
with firm scientists. Some of the linked bioscientists retain their full university positions, but
others have opted for adjunct or other titles that involve less active day-to-day participation, while
still retaining their academic positions and identifying their affiliation as the university on their

publications.

Labor Mobility As Technology Transfer

Labor quality is variable among scientists working on recombinant DNA; some scientists
are very productive while others are not. In breakthrough discoveries scientific productivity
becomes relevant to commercialization, and hence the labor of the most productive scientists is
the main resource around which firms are built or transformed. We can think of these scientists
as "seed crystals” forming the center of a set of resources that they actively seek to augment their
own research productivity, and when that research is highly commercializable, similarly augment
productivity of a firm.

"Star” scientists are important in the process of technology transfer because of the value
of their knowledge to success of firms. In related research, we have found that for an average
firm involved in biotechnology, two genetic sequence articles co-authored by an academic star
scientist and a firm’s scientists result in about 1 more product in development, 1 more product

on the market, and 344 more employees; for five articles these numbers are 5, 3.5, and 860



respectively (Zucker, Darby, and Armstrong 1997a; Zucker and Darby 1996b)."'
Identifying Star Scientists

The breakthrough discovery by Stanley Cohen and Herbert Boyer of the basic technique
for recombinant DNA is the foundation both of a burst of related scientific innovation in the
biosciences and of commercial biotechnology (reported in Cohen, Chang, Boyer, and Helling
1973). While other discoveries and techniques have become important in biotechnology, the core
technology is the application of genetic engineering based upon the Cohen-Boyer breakthrough
of taking a gene from one organism and implanting it in another.*

A very important measure of research success is the discovery of nucleotide sequences that
determine the characteristics of proteins and other molecules; these sequences and the articles that
report them are cataloged in an international scientific data base, GenBank (1990; 1994). In this
paper, we analyze gene sequence articles up to 1990 by at least one U.S. scientist (with one
exception that includes international articles through 1992). GenBank assigns to each article one
or more "primary accession numbers" to identify each genetic sequence.

Based on these accession numbers, we identified a set of 327 star scientists, 305 with
more than 40 genetic sequences through April 1990 and 22 with 20 or more articles (with at least
20 primary accession numbers) to include difficult discoveries that may report fewer sequences
per article on average.” Of these stars, 207 published with an affiliation to an institution in the
United States at least once. Affiliation, including both institution and address (country), are not
included in GenBank but were hand coded from 4,061 articles authored by stars.* When we
examine the full GenBank in the next section, then, we do not have information on

location/affiliation of most authors.



Barriers to Information Flow: Stars’ Knowledge Advantage

Labor mobility of discovering scientists becomes important in technology transfer when
a new discovery has both high commercial value and a combination of scarcity and tacitness that
defines natural excludability, the degree to which there is a barrier to the flow of the valuable
knowledge from the discoverers to other scientists. Those with the most information about
breakthrough discoveries are the scientists actually making them, so there is initial scarcity. To
the extent that the knowledge is both scarce and tacit, it constitutes intellectual human capitai
retained by the discovering scientists (Zucker, Darby, and Brewer 1997 and 1994, Appendix).

Scarcity of the new knowledge is reflected in classic diffusion, beginning with just a
handful of discoverers and growing at a pace that reflects both the value of the knowledge, where
high value discoveries will diffuse more widely and rapidly than those with low value, and its
tacitness.” When the value is high, as in biotechnology, other scientists are motivated to learn
the new knowledge; however when tacitness is high, these other scientists are limited in their
ability to learn it depending on the relative scarcity of those who already know it since scientists
desiring to enter the new area of research may need to have hands-on experience at the bench
before they are able to do so.® Coauthoring, which implies bench level collaboration, provides
our measure of tacitness: Degree of tacitness is high when most new authors are publishing with
at least one old author defined as those who have published before in GenBank, and low if most
new entrants to GenBank can do the research either by him/herself or with all new authors.

Figure 1 illustrates the initial scarcity of the new knowledge, and the overall drop in
scarcity as new scientists increasingly publish in GenBank, enlarging the poel over time of

scientists who continue to publish on genetic sequence research. As also shown in Figure 1, our



tacitness measure declines more slowly than scarcity. In fact, new scientists continue to enter
throughout the 1969 through 1992 period predominantly by publishing with old, experienced
scientists who have previously published in GenBank, and thus demonstrably know the relevant
techniques, with this mode accounting for 81 percent of entry from 1969 through 1992.7
Excluding sole-authored articles, which may be dissertations for new authors and review articles
by established authors, new authors write exclusively with other new authors 36 percent less
frequently than old authors write exclusively with other old authors.® The overall significance
of these differences was confirmed in a loglinear analysis (chi-square =1265.45; G-squared =
1202.83; p >.0001 for both values).

Star Productivity and Labor Mobility to Firms

We have already reviewed evidence identifying the productivity effects of stars
coauthoring with firm scientists--products in development, on the market, and employment
growth--on firm success, explaining why firms are motivated to employ stars. But why are stars
motivated to work with firms? Given the enormous commercial value of their initially scarce
knowledge, financial incentives are obvious, but we believe that there are also important scientific
productivity effects, and again focus specifically on the U.S.

Briefly reviewing the kinds of employment relations with firms, stars may be affiliated,
that is working for firms (measured as listing the firm as affiliation on the article), or stars may
be linked, that is working with firms while maintaining their primary affiliation with a university
or research institute (measured as coathoring with firm scientists while simultaneously listing the
university or research institute as their primary affiliation or assigning a patent on issuance to a

firm rather than to their university or research institute) While affiliated by definition work in



the same region as the firm, linked scientists may coauthor either with firms in their region (local
link) or with firms outside their region (external link, or link to different region). We define
region here as one of 183 functional economic areas in the U.S. as defined by the Bureau of
Economic Analysis (U.S. Department of Commerce 1992).

To measure scientific productivity, we here examine both the number of articles published
in GenBank and the citations to those articles in 1987 and 1992. We find generally that scientists
who became affiliated or linked to firms increase their productivity during the time they are
working with firm scientists, especially in citations/quality, and that for the most part this higher
productivity is not due to a selection effect, but rather to experience during the time the scientist
was working with the firm, generally confirming our earlier results (Zucker and Darby 1996b).

In Table 1 we present the mean number of GenBank articles published pre/during/post
working with the firm for each U.S. star scientist who is ever linked or affiliated with a firm, and
compare productivity across these periods, and also with stars who are never linked or affiliated.
Productivity effects are estimated for affiliated, local linked, and external stars. Underlying each
of these comparisons is a series of regression analyses that because of their complexity will be
summarized here. Both the total output of articles and the rate of articles per year show generally
similar effects: all tied (affiliated or linked) scientists have significantly higher publications pre,
during, and after the firm, but only for locally linked stars is there clear evidence that the rate
of publication increases significantly during the firm, compared to before and after.

Turning now to the quality indicator, citations, affiliated stars show a significantly higher
rate of citations during the firm than before or after; local linked show the same tendency, but

the increase is not significant (though it reaches the p = .08 level). For external links, the



increase during linkage with the firm does reach significance, but there is also evidence of a
similarly high rate of citation to their pre-firm articles, suggesting a selection effect. The
increased quality of the articles is probably due to increased resources and higher standards of
reliability at firms relative to universities, based on interviews with firm-tied stars.

There are many specific gains to trade between star scientists and firms that make it
attractive to both to move at least part of the labor effort of stars to firms that are working to
commercialize their discoveries. Figure 2 uses a dark-lined triangle to indicate the stars that
move at least some of their labor effort to a firm, with a lighter-edged triangle indicating the total
number of stars. Firms are indicated by a burred star. It provides a graphic illustration of the
amount of labor mobility of stars, and shows that the locations of mobile stars and firms are both
concentrated and highly correlated geographically. In the next section, we develop a model of

this mobility process, and then use it to motivate estimation of mobility in the following sections.

The Model:

In the job mobility literature, experience and employer-specific human capital are the key
variables explaining movement. Specific human capital is not significant for the current case of
star bioscientists and will not be discussed further (but it is detailed under individual
characteristics in Table 2). In analyzing job mobility between employers, Topel (1986) and Topel
and Ward (1992) assume that wage offers from potential employers are generated by a known
offer distribution which reflects the variation in expected values of marginal product across
employers. The location of this distribution should vary across individuals according to their

characteristics which indicate differences in productivity to potential employers. Topel and Ward



(1992) abstract from individual differences and assume that the location of the external wage

offer distribution depends on an individual’s cumulative labor market experience X:

(D probw, <z:X) = G(zX), Gz X) =0

Topel and Ward note that experience increases wage offers if the last inequality in (1) is strict,
but observed wages will increase with experience due to search even if expected productivity is
independent of experience [Gy(z;X) =0].

For the star scientists we are considering, it is possible for both potential employers and
econometricians to readily measure a vector Q of indicators of expected value of marginal
product. Elements of this vector would include whether the scientist is employed by a top-quality
university, is tenured there, the quantity and quality of articles published previously (quality is
observed directly by the firm but proxied for us by the number of citations per article), and
whether the scientist’s work has concentrated on human genetic sequences (refer again to Table
2, quality characteristics of star and commercial potential). Increases in each of those variables

would increase the expected value of a star scientist to any given firm.

@ probw, <zQ) = G(z0Q), Gy(z;Q) =0

where Gy(z;Q) is the vector consisting of partial derivatives for the continuous variables and
partial differences for the categorical variables (i.e., top-quality university, tenured). Hence the

probability of receiving an offer from some firm which exceeds any given value generally



increases with the characteristics in Q. In principle, experience X might be an element of Q, but
we see below that in the presence of more direct productivity measures X is insignificant as a
predictor of mobility.

Star bioscientists moving from a university (in whole or part) are typically employed by
four distinct types of potential alternate (or joint) employers: local firms, external (out-of-local-
region) firms, local universities, and external universities. Movement to another university or
firm or even part-time collaboration (linkage) to a firm generally involves a major time
investment for the scientist and occurs infrequently; so, for practical purposes, we can assume that
only one such move is possibie in any given period. We mode! the scientist as acquiring a new
employer if an offer exceeding the type-specific (see below) reservation value is made by any of
each of the four types of employers and distinguish between full- and part-time work with firms.

We assume that because of egalitarian pressures within the university as well as the
potentially greater returns to commercial applications of the star’s intellectual human capital that
higher values of any of the elements of Q shifts the location of the G function by more than the
reservation value R so that the probability of an acceptable offer from any of the four types of

potential employers (indexed by i) increases in Q also:

(3) prOb(wa <R;Q: i) = G(Z;Q;i): GQ(Z;Q:i) S 0
where i = 1 for full-time local firm job, 2 for full-time external firm job, 3 for
part-time local firm link, 4 for part-time external firm link, 5 for other

local university jobs, and 6 for external university jobs



This assumption is more obvious for movements to firms (i = 1-4) than for universities (i =
5,6), but academics frequently note that much greater weight is placed on externally visible
research productivity in hiring from the outside than in promoting from within. In any case, our
principal concern in this paper is explaining embodied technology transfer from universities to
firms, so movements to other universities enter only as potential temporary interference with that
process.

Specifically, we want to explain the probability per unit of time that a scientist will
become involved in commercial applications of biotechnology full or part-time with either a local
or external firm. The overall hazard function therefore can be written as the sum of the firm-

type-specific hazard functions (Kalbfleisch and Prentice 1980, p. 167):

(4) AMLQH) = g At @, H)

i=1
where Q as before is our vector of externally observed measures of intellectual human capital and
H represents other factors affecting the hazard rate. The additive form of the hazard function
implies that we can group relevant subseis for empirical purposes such as full-time versus part-
time or local versus external employers.

Since equation (3) describes the conditions under which a single trial will result in an
offer greater than the reservation value for that type of firm, pfominent candidates for variables
which might belong in H a;re those which increase the rate at which individual employer-scientist
matches are considered per unit of time. We again refer back to Table 2. Other things equal,

we expect that the cost of moving residence and family (and those of research lab teams)--or the
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cost of travel for part-time work--gives a lower reservation value and hence higher probability
per trial for local employers. However, the number of local trials is limited by the extent of the
market; so we include the number of new biotechnology enterprises in the same region as the
scientist’s university and expect that variable to increase the probability of initiating (local)
commercial ties. Similarly, a higher number of top-quality universities in the same region should
reduce the probability of initiating commercial ties by increasing the probability of interfering
inter-university movements.”® External employers are numerous relative to the feasible number
of trials for a scientist over any short number of years, but to the extent that the scientist has a
higher fraction of his or her coauthors at organizations elsewhere we anticipate that the frequency
with which alternative employment opportunities can be explored is increased per unit time. This
variable appears in the variable list in Table 2 under size of social networks. Changing
employers among universities or research institutions may play a similar role in increasing the
probability of receiving information about alternative employment opportunities.

One major factor which may reduce the reservation wage for firm employers is the
experience that star scientists saw their productivity maintained or increased in quantity of
publications when they became employed by or collaborated with firms and dramatically
increased in quality in terms of citations per article while thus tied to firms, especially for
affiliated stars, as we discussed above in connection with Table 1 (see also Zucker and Darby
1996b)."° We assume that this symbiotic effect on personal productivity and hence scientific
prestige and expected future earnings was not expected by scientists until it was observed; so we
include in H two measures of experienced increase in productivity by other star scientists who

have previously moved to firms: The average change in number of citations by stars during the
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time they are affiliated with a firm, using the measure in the prior period to predict mobility in
the current period, and separating the experience of stars in the same region from that of stars
in other regions since the former may be better known. Again, these variables can be found in
Table 2 under regional variables.

It should be noted that the star scientists frequently play a key role in the founding of the
firms with which they become affiliated or linked (Zucker, Darby, and Brewer 1997 and 1994
Appendix; Zucker, Darby, and Armstrong 1997a). That is, what appears to be employment may
in fact be entrepreneurship. We expect that characteristics which predict a high marginal product
to potential employers will also be attractive to potential investors, so the analysis is not greatly
affected whether the scientist is searching for an employer or venture capital. Indeed, prospecti
for initial public offefings of new biotech firms frequently list precisely these sorts of
qualifications in Q for key associated scientists. Since there is a significantly positive
agglomeration effect reported by Zucker, Darby, and Brewer (1994), a star should find it easier
to start a new firm where there are more firms already, so the sign of total new biotechnology
enterprises in the region should be positive here too.

In the next section, we use group duration analysis of proportional hazard models to test
the hypothesis that our measures Q of scientific quality and H of factors affecting trial frequency,
reservation values, and interfering university offers have the predicted effects on the probability
that a star will become employed by or a collaborator of a firm and that these effects will
dominate traditional measures such as experience. We find that early in a star’s university career,
there is a very low probability of affiliating or linking to a firm, although this is higher for stars

located in regions and times with more numerous new biotechnology enterprises. The hazard rate
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increases over a star’s early publishing career in GenBank (measured as years since first
publication appeared in GenBank), with an estimated peak around the tenth year. Only one star
started publishing with a firm, that is, became affiliated with a firm as his first job.

In the next section we first introduce the variables not yet discussed and then provide a
brief explication of the methodology, with details in the Appendix. Initially a grouped duration
model is applied to determine what could be an appropriate assumption for the base hazard

function and finally a correction for heterogeneity is carried out.

Methods
Data Sources

We have now reviewed most of the variables listed in Table 2. Most of our variables are
drawn from GenBank and the articles published by the star scientists that are catalogued in
GenBank (for affiliation, location, and nature of coauthor relations from collaborating with firm
scientists to size of social network), and the genetic sequences that are given primary accession
numbers in GenBank.

There are five major sources of additional data: (1) Institute for Scientific Information’s
Science Citation Index (1987, 1992) on the total number of citations to each of our 4,061
published articles for each of the indicated two years;" (2) Listing and location of all U.S.
universities provided by Higher Education General Information Survey (HEGIS), Institutional
Characteristics, 1983-84 (U.S. Department of Education, National Center for Education Statistics,
1985) and National Research Council’s rating survey of research university departments (Jones,

Lindzey, and Coggeshall 1982), where we use the presence of at least one "biotech-relevant”
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department (biochemistry, cellular/molecular biology, and microbiology) with scholarly-quality
reputational ratings of 4.0 or higher in the 1982 to define top quality universities of which there
are 20 in the United States;'* (3) Bioscan (1988-1994) and Cetus Corp. (1986), coupled with
North Carolina Biotechnology Center’s U.S. Companies Database (1992), on the total number
of new biotechnology enterprises by location in the United States; (4) Detailed bibliographic
information from five major sources listed in Data Sources following the references (American
Men and Women of Science, Biotechnology Research Directory 4000 Faculty Profiles, Who's
Who of Nobel Prize Winners, 1901-1900, National Academy of Sciences Organization and
Members 1993, and the 1990 Directory of the American Association for the Advancement of
Science);" and (5) Annual salary data for associate and full professors from most U.S. research
universities from The American Association of University Professors Bulletin and Academe from
1970 through 1989, and for the handful of institute affiliations from telephone interviews with
the respective institutes.
Group Duration Models

The expected amount of time the scientist stays in universities without moving to a firm
differs because each scientist has a different vector Q of indicators of expected value of marginal
product (whether employed by a top quality untversity, is tenured there, the quality and quantity
of articles published previously, and number of human genetic sequences) and faces different
local economic areas that alter each scientist’s reservation wage (number of new firms, number
of top quality universities). All of these sources of differences are represented by a regressor
vector x, for each scientist. This regressor vector may have elements that only change across

individuals and stay constant during the time of the duration (most of our variables are time
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invariant covariates) or might change through the time of the duration (time varying covariates
are total citations, total publications, and number of new biotechnology firms).

Time invariant covariates fall into two classes: variables that are defined prior to the
move, including the number of human sequences and the percent collaborators from outside his
ot her organization, and variables that describe the university or research institute that are updated
each time the scientist changes university or institute (top quality university, location in specific
key university clusters, Stanford/UC San Francisco or MIT/Harvard, and location at the National
Cancer Institute).

We follow in the footsteps of initial uses of duration models as reported in Lancaster
(1979), Nickell (1979) and Petersen (1986a, 1986b). These duration models were selected based
on concern with unobserved heterogeneity, while statisticians have instead emphasized the
elegance of the use of semiparametric models which do not require parametric specification of
the baseline hazard, most often preferring the proportional hazard-partial likelihood specification
(PHM, see Cox 1972, 1975, Cox and QOakes 1984, Kalbfleisch and Prentice 1980) . The
semiparametric models have not received much use in economics, despite their elegance, for three
reasons identified by Han and Hausmann (1990): (1) It is a continuous time specification while
most duration data in econometrics are discrete, e.g. determining duration based on publication
date of the first article using a firm address for location or writing with firm coauthors; (2) Ad
hoc procedures used to treat tied failure times within the partial likelihood framework are
cumbersome in the presence of many ties (many simultaneous failures), as found in our data
where the majority of scientists exit the universities in their fourth year; (3) Unobservable

heterogeneity cannot be included without the presence of multiple integrals of the same order as
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the number of individuals in the risk set, which makes estimation difficult, if not impossible.

We elect to use the grouped data version of the proportional hazard model to develop
computationally feasible estimators of the relative risk function and the corresponding survivor
function in the presence of many tied failure times. Specifically, we apply the technique of group
duration analysis developed and used by Prentice and Gloeckler (1978) and Ryu (1994), given
that our observations are the articles published by year and so time is measured (grouped) at
intervals, available discretely at the level of the year. The spell T, number of years, is the
difference in years between either the date each star scientist entered a university, as recorded in
one of the biographical directories (see Data Sources), or the first date of publishing in GanBank,
and the first article in GenBank that shows him/her affiliated or linked to a firm through
coauthorship. See the Appendix for a derivation of group duration analysis that we use in our
main analyses.

Given then that group duration information is a sequence of binary information we can
apply a logistic function which is inherently easier to compute, selecting from ordered probit and
ordered logit models, as suggested by Han and Hausman (1990). In some exploratory research
(Han and Hausman 1990), the estimates of the ordered logit and ordered probit models are very
similar except in the extreme left tail. Given these small differences, we selected the ordered
logit model because of the simplicity of its calculation.

Multinomial Logit

We selected multinomial logit to explore the effects of selecting different relationships to

a firm. Each star scientist is assumed to have preferences defined over a set of alternatives:

Affiliated or linked to a firm. Since this technique is more commonly used, we do not go into
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further detail on it.

Empirical Results for the Group Duration Model

The results reported in Table 3 are generally supportive of the suppositions contained in
our mobility model. Standard individual characteristic variables generally fail to reach
significance, though they are generally in the expected direction. The one exception is the "first
year that the star publishes in GenBank" which is experience of a very special sort; the negative
sign indicates that later the year of entry, the less probable that the star becomes affiliated or
linked to a firm.

Of the quality variables only the number of citations enters significantly. The larger the
number of citations, the more likely the star will be to move out of the university. The
insignificant coefficient on the quantity of articles suggests that firms don’t distinguish between
a scientist with a few highly cited articles and another with many lesser cited articles as long as
total citations are the same, (In an analysis not reported here, we find that the number of articles
enters significantly to increase the probability of moving to a firm if number of citations is
removed from the equation, but the overall fit declines.) Receipt of tenure or the Nobel Prize
appears to raise the reservation wage as much as the offer distribution with no net effect on
mobility.

Our indicator that the scientist’s work has more immediate commercial potential, the
number of human genetic sequences, enters significantly robustly across the different
specifications, increasing the "death" rate or rate of labor mobility from the university or research

institute to the firm. In contrast, none of the characteristics of the university or research institute
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currently employing the star are ever significant (the index of wages is considered below).

The count of new biotechnology enterprises and top quality universities in the region are
both significant, but as expected they act in opposite directions on the probability of moving to
a firm. As the number of firms grows larger, so does the probability of a star scientist becoming
tied to a firm; as the number of top quality universities grows larger, the probability of a star
becoming tied to a firm declines.

The proportion of a star’s coauthors that are from different institutions increase the
probability of moving to a firm, as we would expect based on increasing information about
potential opportunities. Another sort of information, about the quality of the experience other
stars’ have had working with firms, entered significantly: the larger the increase in citations to
local stars who became involved with firms, the more likely is a star to become involved.
However, the citation experience of stars outside the region has no significant effect.

Overall, Table 3 provides strong support for our conjectures. While many of the variables
are not significant, key variables measuring quality and commercial potential of the intellectual
human capital significantly increase the probability of moving to a firm, as do various measures
of increasing information about opportunities (social network) and about scientific productivity
gains to working with firms.

We now consider briefly the issue of wages earned in the university, under the hypothesis
that higher university wages would increase the reservation wage and hemnce the time it takes
scientists to move to a firm. Unfortunately, we were not able to obtéin the actual salary paid to
each star scientist while he/she was in the university, so we constructed a proxy index of wages

by dividing the specific wage in the university or institute employing the star scientists over the
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average of the wages for all the universities and institutes in the relevant year This index of
wages never entered significantly, but was in the right direction and approaching significance
when entered with only the first year star publishes in GenBank., Table 4 presents these results.

Table 5 reports the estimation of a multinomial logit model which examines the choice
of becoming affiliated with or linked to a firm. The parameter estimates indicate that very
similar processes are involved in the decision to become wholly or partially involved with a firm,
although fewer of the coefficients are significant for affiliated stars, apparently because of the
relatively fewer observations for affiliated stars. For affiliated stars, the quality of the star
scientist is the most important variable affecting the probability of a move to a firm, though the
number of articles is negative indicating a premium for earning total citations in fewer more
highly cited articles. New biotech enterprises is significant in the expected direction, as is the
first year that the star publishes in GenBank. Linked stars show a very similar pattern of
significant variables to the overall results reported in Table 3 and discussed above, except that

the average change in citations of other local stars lose their significance.

Summary and Implications

We have shown across a series of analyses that star scientists with high quality intellectual
human capital--here measured in terms of number of citations to genetic-sequence-discovery
articles--that is relevant to firms commercializing biotechnology (i.e.,amplified by discovery of
human genetic sequences) leads to moving at least some of their labor from universities to firms
earlier in the process (after a shorter duration in the university). We have also demonstrated

strong effects of the opportunities available in the stars’ own region: stars have a higher
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probability of moving to a firm when there are more biotech enterprises in their region, and a
lower probability of moving to a firm when there are more top quality universities in their region,
a competing influence. The size of stars’ networks outside of the university also increased the
likelihood of their leaving the university after a shorter duration. Stars also seem to be paying
attention to changes in productivity of other stars in their region who have previously moved to
firms: when these other stars’ citations increase on average, the probability of moving to a firm
after a shorter duration increases. Qur relatively weak measure of wages did not have a
significant impact, but it is not clear whether measurement was the problem or the astronomically
higher wages (especially if full or partial ownership of the firm is included) on the other side of
the equation. The muitinomial logit results for the choice of becoming affiliated or linked to a
firm show a generally similar pattern of results as the pooled analyses, with linked scientists close
to matching but with the smaller affiliated stars having fewer significant explanatory variables.

Overall, the empirical analysis provided strong support for the model we developed. We
hypothesized that the very valuable intellectual human capital would serve as the basis for
mobility, not the much less precise measures of experience and firm-specific experience that are
typically used in these models. When it is worth investing in costly information, both the
individuals and the organizations involved will invest in collecting and using it (Zucker and
Darby 1996a). The value of the information is a key determinant. We examine value in two
principal ways. In this paper, we operationalize an important new measure of the degree of tacit
knowledge, resting on a coathorship measure we developed to examine labor mobility of star
scientists to firms:'"* Even as scarcity of the knowledge may be declining, tacitness may not be--

or at least not as fast. Throughout the period in which we are examining star scientist mobility,
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most new authors entered GenBank by publishing with at least one old author (81 percent of the
entry from 1969 through 1992). While there are competing explanations for this finding, none
are as parsimonious as the high and only gradually declining tacitness of the knowledge, which
provides natural excludability or a natural barrier to the entry of new scientists and hence returns
to those who hold the tacit knowledge.

We also measure value in a related paper on the effects of stars on the success of new
biotechnology enterprises, and find that university star scientists who actually work with firm
scientists have a strong positive effect on products in development, products on the market, and
employment growth. Due to both of these sources of value, the labor of star scientists i the U.S.
has strongly moved to firms and has done so in very concentrated, localized areas, as illustrated
in Figure 2 above.

Finally, we wish to conclude with the observation that scientists and the universities,
research institutes, and high technology firms that they work in are recurrently faced with
knowledge discontinuities that require some kind of technology transfer mechanism. There are
thus incentives for them to construct structures--or to be "born" with structures--that lower the
costs of new knowledge acquisition: Both affiliation and link to firms fit well within the
structure of a "normal” academic career. For scientists, moving part of their labor effort outside
the university is common, and is concentrated in the high quality end of the faculty distribution,
certainly not "marginal. "** Many universities do not place any restrictions on professor’s outside
employment, while universities with rules typically allow 40 percent of facuity time to be spent
on outside consulting. One study of academics found that 20 to 25 percent of faculty income was

earned outside the university (George G. Stigler 1950, pp. 42, 60). High technology firms
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routinely employ the very top scientists across a wide variety of positions, from heads of
scientific teams to members of scientific advisory boards, some full time and some traditionally
part-time. Even in countries with substantial barriers to collaboration across university
boundaries, firms and entrepreneurial academic scientists find "work-arounds" such as bringing
firm scientists into the university labs along with a "stipend” from the firm to cover laboratory
materials, as is routine in the national universities in Japan (Darby and Zucker 1996).

We have uncovered an important and neglected set of processes that allow retention of
knowledge by its discoverer and incorporation of that knowledge--at least for some period of
time--into the intellectual human capital of the discoverer. When this knowledge is valuable,
there will be high demand for those who retain it and structures that allow technology transfer
between the discoverers and those who wish to use it in science or commerce will develop, even
around significant institutional barriers. We have examined the employment relation of star
scientists through affiliation and linkage to firms as one structural mechanism that facilitates

technology transfer from universities and research institutes to firms.
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APPENDIX

We use the grouped data version of the proportional hazard model in an attempt to
develop computationally feasible estimators of the relative risk function and the
corresponding survivor function in the presence of many tied failure times (Prentice and
Gloeckler 1978 and Ryu 1994).

First divide the interval between the beginning of the measurement period, T=0, to
the time of the measurement, T=ti, into j exhaustive non overlapping intervals, ag< aj
<... < aj.] < aj and the covariates will be assumed to stay constant within each of the j
intervals and may change from one interval to the next. Given that the observations are
the articles published by year and so T is available discretely and only up to years , the best
technique to consider is group duration.

The main idea is that there is an observation scheme grouped into intervals (years
in our case):

(1) A -[a-,a)i=1... ... r

with a0 =0, ar = @
and the failure times in Ai are recoded as ti.

Now for each interval we observe (X;, T;) where X refers to the characteristics of
the individuals and T; refers to the duration. Let « = the probability of surviving the ith
interval given that an individual has survived up to the (i-1)th interval (conditional
probability). Therefore:

ai

~I h(t)d
(2) aj = e ¥
Pr(T>a) _  S(a)
Pr(7T> a-1) S(a-1)

(3) So: a;= P(T>aq  T>a-1)=
-1 A(u)du

4 but: S(a)=e "
—... h (u)du

(5)  Therefore. a; = e !
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Then the probability of observing a failure at time ti on an individual with regression
vector X is:

i1
(6) [1 - a:xp ( x.ﬂ)]H a:xp(x,ﬁ)
ji=1

J=

where the probability of surviving to the beginning of At is:

i-1
(M P@E,x) =]]ar”
j

Given then that group duration information is a sequence of binary information we can
apply a logistic function given that it is easier for computation:

Le¥fr i

8) ai = e where.y; = logj N ho(t)dt
J

This model is easy to estimate using either an ordered probit or ordered logit
approach. In some exploratory research by Han and Hausman (1990), the estimates of the
ordered logit and ordered probit models are very similar except in the extreme left tail.

Accordingly, we select the ordered logit model because of the simplicity of its calculation.

24



REFERENCES

Cohen, Stanley, A. Chang, Herbert Boyer, and R. Helling, "Construction of Biologically
Functional Bacterial Plasmids ir vitro," Proceedings of the National Academy of Sciences,
1973, 70: 3240-3244.

Cox, D. R., "Regression Models and Life Tables, " Journal of the Royal Statistical Society, Series
B, 1972, 34: 187-220.

Cox, D. R., "Partial Likelihood, " Biometrika, August 1975, 62(2):. 269-276.

Cox, D. and Oakes, R, Analysis of Survival Data, London, U.K.: Chapman and Hall, London,
1984

Darby, Michael R.,and Lynne G. Zucker, "Star Scientists, Institutions, and the Entry of Japanese
Biotechnology Enterprises,” National Bureau of Economic Research Working Paper No.
5795, October 1996.

Han, Aaron, and Jerry A. Hausman, "Flexible Parametric Estimation of Duration and Competing
Risk Models," Journal of Applied Fconometrics, January-March 1990, 5(1): 1-28.

Kalbfleisch, John D., and Ross L. Prentice, The Statistical Analysis of Failure Time Data, New
York, NY: John Wiley and Sons, 1980.

Lancaster, Tony, "Econometric Methods for the Duration of Unemployment, " Econometrica, July
1979, 47(4): 939-56.

Liebeskind, Julia Porter, Amalya Lumerman Oliver, Lynne G. Zucker, and Marilynn B. Brewer,
"Social Networks, Learning, and Flexibility: Sourcing Scientific Knowledge in New

Biotechnology Firms," Organization Science, July/August 1996, 7(4): 428-443.

Nickell, Stephen, J, "Estimating the Probability of Leaving Unemployment,” Econometrica,
September 1979, 47(5): 1249-66.

Petersen, Trond, "Fitting Parametric Survival Models with Time-Dependent Covariates, " Journal
of the Royal Statistical Society, Series C, 1986, 35(3): 281-288. (1986a)

Petersen, Trond, "Estimating Fully Parametric Hazard Rate Models with Time-Dependent
Covariates," Sociological Methods and Research, 1986, 14: 219-246. (1986b)

Prentice, R. L., and L. A. Gloeckler, "Regression Analysis of Grouped Survival Data with
Application to Breast Cancer Data," Biometrics, March 1978, 34: 57-67.

25



Ryu, Keunkwan, “Group Duration Analysis of the Proportional Hazard Model: Minimum Chi-
square Estimation and Specification Tests, " Journal of the American Statistics Association,
December 1994, 89(428): 1386-1397.

Sindelar, Robert D., "QOverview/Preview of Current and Future Recombinant DNA-Produced
Pharmaceuticals, " Drug Topics, April 20, 1992, Supplement, pp. 3-16.

Sindelar, Robert D., "The Pharmacy of the Future," Drug Topics, May 21, 1993, 137(9): 66-84.

Spence, Michael, "Job Market Signalling." Quarterly Journal of Economics, August 1973, 87(3):
355-375.

Spence, A. Michael, Market Signalling: Informational Transfer in Hiring and Related Screening
Processes, Cambridge, MA: Harvard University Press, 1974.

Stigler, George J., Employment and Compensation in Education, National Bureau of Economic
Research Ocassional Paper 33, Nee York, NY: National Bureau of Economic Research,
19590.

Topel, Robert H., “Job Mobility, Search, and Earnings Growth: A Reinterpretation of Human
Capital Earnings Functions,” Research in Labor Economics, 1986, 8(Part A): 199-233.

Topel, Robert H., and Michael P. Ward, “Job Mobility and the Careers of Young Men,”
Quarterly Journal of Economics, May 1992, 107(2): 439-479.

Zucker, Lynne G., Marilynn B. Brewer, Amalya Oliver, and Julia Liebeskind, "Basic Science as
Intellectual Capital in Firms: Information Dilemmas in rDNA Biotechnology Research,”
working paper, UCLA Institute for Social Science Research, 1993.

Zucker, Lynne G., and Michael R. Darby, "Costly Information: Firm Transformation, Exit, or
Persistent Failure, " American Behavioral Scientist, August 1996, 39(8): 959-974. (1996a)

Zucker, Lynne G., and Michael R. Darby, "Star Scientists and Institutional Transformation:
Patterns of Invention and Innovation in the Formation of the Biotechnology Industry,”
Proceedings of the National Academy of Sciences, November 12, 1996, 93(23): 12709-
12716. (1996b)

Zucker, Lynne G., and Michael R. Darby, "Present at the Revolution: Transformation of
Technical Identity for a Large Incumbent Pharmaceutical Firm after the Biotechnological
Breakthrough," Research Policy, 1997 in press.

Zucker, Lynne G., Michael R. Darby, and Jeff Armstrong, "Intellectual Capital and the Firm:

The Technology of Geographically Localized Knowledge Spillovers.” National Bureau
of Economic Research Working Paper No. 4946, December 1994,

26



Zucker, Lynne G., Michael R. Darby, and Jeff Armstrong, "Geographically Localized
Knowledge: Spillovers or Markets?", Economic Inquiry, 1997 in press. (1997a)

Zucker, Lynne G., Michael R. Darby, and Jeff Armstrong, "Sources of Superior Performing
Firms: Evidence from the U.S. Biotechnology Industry," working paper, UCLA Institute
for Social Science Research, February 1997. (1997b)

Zucker, Lynne G.; Darby, Michael R. and Brewer, Marilynn B. "Intellectual Capital and the
Birth of U.S. Biotechnology Enterprises.” National Bureau of Economic Research
Working Paper No. 4653, February 1994.

Zucker, Lynne G., Michael R. Darby, and Marilynn B. Brewer, "Intellectual Human Capital and
the Birth of U.S. Biotechnology Enterprises,” American Economic Review, September
1997, 87(4): in press.

Zucker, Lynne G., Michael R. Darby, Marilynn B. Brewer, and Yusheng Peng, "Collaboration
Structure and Information Dilemmas in Biotechnology: Organizational Boundaries as

Trust Production,” in Roderick M. Kramer and Tom R. Tyler, eds., Trust in
Organizations, Thousand Oaks, CA: Sage, 1996. [Pp. 90-113]

DATA SOURCES
Academe, Volumes 65-79, 1979-1993.
American Association for the Advancement of Science, 7990 Directory: Consortium of Affiliates
for International Programs, Washington, DC: American Association for the Advancement
of Science, 1990,
American Association for the Advancement of Science, AAAS Handbook 1995/1996: Officers,
Organization, Activities, Washington, DC: American Association for the Advancement

of Science, 1995.

American Association of University Professors Bulletin, Volumes 55-64, December 1969-
December 1978. '

American Men and Women of Science, 1st-19th editions, New York, NY: Jacques Cattell
Press/R. R. Bowker Company, 1971-1994.

Bioscan, Volumes 2-8, 1988-19%4.

Cetus Corp., "Biotechnology Company Data Base," printout of predecessor source for Bioscan,
Emeryville, CA: Cetus Corp., 1986.

27



GenBank, Release 65.0, machine readable data base, Palo Alto, CA: IntelliGentics, Iic.,
September 1990.

GenBagnk, Release 81.0, machine readable data base, Bethesda, MD: National Center for
Biotechnology Information, February 15, 1994.

Institute for Scientific Information, Science Citation Index, ISI Compact Disc Editions, machine
readable data base, Philadelphia: Institute for Scientific Information, 1982, 1987, 1992.

Jones, Lyle V., Lindzey, Gardner and Coggeshall, Porter E., eds., An Assessment of Research-
Doctorate Programs in the United States: Biological Sciences, Washington, DC: National
Academy Press, 1982.

National Academy of Sciences, National Academy of Engineering, Institute of Medicine, and
National Research Council, Organization and Members 1993, Washington DC: National
Academy Press, 1993,

North Carolina Biotechnology Center, Biotechnology Information Division, Biotechnology
Research Directory: 4000 Faculty Profiles, Washington, DC: Bureau of National Affairs,
Inc., 1991,

North Carolina Biotechnology Center, North Carolina Biotechnology Center U.S. Companies
Database, machine readable data base, Research Triangle Park, NC: North Carolina
Biotechnology Center, April 16, 1992.

Schlessinger, Bernard S., and June H. Schlessinger, eds., The Who’s Who of Nobel Prize
Winners, 1901-1990, 2nd ed., Phoenix, AZ: Oryx Press, 1991.

U.S. Department of Commerce, Economics and Statistics Administration, Bureau of Economic
Analysis, Regional Economic Information System, Version 1.3, CD-ROM, machine
readable data base, Washington: Burean of Economic Analysis, May 5, 1992,

U.S. Department of Education, National Center for Education Statistics, Higher Education
General Information Survey (HEGIS), Institutional Characteristics, 1983-84, machine
readable data base, ICPSR 8291, Ann Arbor, ML: Iuter-University Consortium for
Political and Social Research, circa 1985.

28



FOOTNOTES
1. For about 15 years after the breakthrough, only a handful of firms have positive profits from
using the new technology in part because of the industry context (FDA approval requires 11 to
12 years) and in part because of the very high research and development costs. Thus, it is lnot
possible to use firm financial data or financial market value as measures of productivity.
2. The other basic technology is cell fusion (also termed monoclonal antibodies, MABs, or
hybridomas) in which lymphocytes are fused with myeloma cells to create rapidly proliferating

antibody-producing cells (see Sindelar 1992 and 1993 for more detail).

3. These 327 stars were only 3/4 of one percent of the authors in GenBank but accounted for 17.3
percent of the published articles, almost 22 times as many articies as the average scientist. The
Genbank data set, methods of identifying stars, and productivity of the stars are discussed in more
detail in the Data Appendix included in Zucker, Darby, and Brewer (1994) and in Zucker and
Darby 1996b).

4. The Science Citation Index lists up to six of the affiliations listed on the paper but only links
the corresponding author to a particular affiliation. Thus, only first- and/or corresponding-author
affiliations are available in machine-readable sources and bioscience papers frequently list the
head of the lab last. As might be expected, our stars, excluding sole authored articles, were last
authors on over 69 percent of the articles, where GenBank articles have on average about 4.8
authors per article,

5. Comparing different scientific breakthroughs to determine the initial starting size of the
discoverers, the degree to which learning by doing is involved (coauthoring with "old" scientists
as the predominant mode of entry), and the relative rates of "diffusion” is an important next step.
For example, a much less tacit process appears to operate in the case of high-temperature
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superconductors where the know-how was widespread prior to the breakthrough experiment that
demonstrated that ceramics incorporating rare earths can work as superconductors at economicaily

interesting temperatures.

6. Exceptions typically include the handful of scientists working in the very narrow specialized
area as the discovering scientists. At the extreme, when initial scarcity and tacitness are very
high, transmission of the new knowledge will only be to the graduate students and postdocs

working in the same lab as the discovering scientists.

7. Reports of publications for 1993 were incomplete in February 1994 so that year has been
excluded from the figure and these calculations. In the incomplete reports for 1993, entry with
old authors amounted to 83 percent of total entry.

8. Sole-authored articles account for only 6.5 percent of the authorships of new authors and 7.8
percent of the authorships of old authors over this period. Interestingly, new sole authors become
more frequent later in the period as the value of the tacit knowledge declined as it became more
widespread (see also, Zucker, Darby, Brewer, and Peng 1996).

9. While star scientists occasionally accept an extraordinary offer from universities below top-
quality rating, we believe a count of top-quality universities is an adequate measure of the local
university markef.

10. In addition, local-linked star scientists generally have significantly greater impact on the
firm’s success than do scientists from other areas (Zucker, Darby, and Armstrong 1997a and b).
Thus local firms should have a higher expected offer for part-time linkage than external firms,
reinforcing the higher probability that an offer of linkage by a local firm will exceed the

reservation value.
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11. We also use citations for 1982 in computing experienced change in citations during firm ties,
but exclude it from the main analysis because of the small number of articles and stars with
significant 1982 citations.

12. The twenty universities were: Brandeis University, California Institute of Technology,
Columbia University, Cornell University, Duke University, Harvard University, Johns Hopkins
University, Massachusetts Institute of Technology, Rockefeller University, Stanford University,
University of California-Berkeley, University of California-Los Angeles, University of California-
San Diego, University of California-San Francisco, University of Chicago, University of Colorado
at Denver, University of Pennsylvania, University of Washington (Seattle), University of
Wisconsin-Madison, Yale University.

13. We filled in some missing data for particular stars from Who’s Who of British Scientists,

1980/81, Who’s Who in Science in Europe, and Who’s Who in Biotechnology.

L]

14. We build here on a novel empirical measure we developed in earlier research: "co-
publishing, " examining all scientists who publish together, to measure who the stars are working
with at the bench science level and which organizations are invelved in the collaboration (by
obtaining the organizational affiliation of all scientists). We have previously used our measure
to examine reciprocal productivity effects of star scientists working with scientists in firms (see
our discussion of these results in Section III below), effects of organizational boundaries as
information envelopes slowing diffusion of scientific knowledge, and size and geography of
scientific networks used by firms (Zucker, Darby, and Armstrong 1994 and 1997, Zucker and
Darby 1996; Zucker, Darby, Brewer, and Peng 1996; Liebeskind, Oliver, Zucker, and Brewer
1996; Zucker, Brewer, Oliver, and Liebeskind 1993). The validity of our co-publishing indicator

for the existence of contractual or ownership relationships with firms has been confirmed through
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extensive interviews conducted with university scientists and administrators, and with firm
scientists, CEQs, and corporate board members (for U.S. examples, see Zucker and Darby 1997;

Zucker, Brewer, Oliver, and Liebeskind 1993).

15. Most of research on part-time work and/or multiple jobs focuses on low skill, low wage
employment and "moonlighting.”" The common, and perhaps even typical, pattern of top
academic scientists routinely and recurrently moving a significant part of their labor outside the
university to another organization, sometimes created by them, has received much less empirical
attention. Labor effort can be quite mobile. Part-time doesn’t necessarily mean marginal, either
in terms of the amount of effort nor in terms of the effects of that effort on productivity, here
of both the firm and the scientist. Part-time "consulting” or control of an outside business often
involves substantiai labor effort; at least in our research on biotechnology, we find strong positive
effects of that effort on productivity of both the firm and the scientist (Zucker and Darby 1996b).
Possible benefits to the university include paying lower wages than would otherwise be necessary,
receiving acclaim for the net productivity of the scientist (including the--sometimes higher--
productivity achieved through outside employment), and increased visibility of the university in

non-academic arenas (increasing fund raising success among entre¢preneurs, for example).
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Table 1

Mean Numbers of Articles and Citations by Commercial Ties of U.S. Star Scientists

Mean number of articles per vear

Type of stars pre-firm during firm after firm never in firm
Affiliated stars 2,080 2.481 3.500

Local linked stars 2,297 3.322 1.789

External linked stars 1.978 2.452 2.077

Never linked or affiliated stars 1.611

Mean number of citations per article

Type of stars pre-firm during firm after firm never in firm
Affiliated stars 14.495 29,738 6.868

Local linked stars 13.723 16.672 8.145

External linked stars 16.914 17.335 6.830

Never linked or affiliated stars 11.710

Note:  Mean citations are the ratio of total citations in the Science Citation Index for 1987 and 1992
summed over all the genetic-sequence-discovery articles (up to April 1990) in Genbank (1990}
authored or coauthored by each of the stars in the cell to the total numbers of those article summed
over all the stars in the cell.
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Table 2

Descriptive Statistics

Variables Mean

INDIVIDUAL CHARACTERISTICS

Gender of star scientist (M =1, F=0) 0.96

Age of star scientist 54.22
Age squared 3055.61
Marital dummy (M =1, otherwise 0) 0.77

First year star publishes in GenBank 1980.51
Number of children 1.69

QUALITY CHARACTERISTICS OF STAR

Total pumber of articles in GenBank 9.35

Total citations to articles in GenBank 126.38
Nobel prize dummy (yes=1, no=0) 0.04

Tenure dummy (yes=1, no=0) 0.88

CHARACTERISTICS OF UNIVERSITY OR RI

University top quality dummy (yes=1, no=0) 0.49

University average reputation 3.915
MIT or Harvard University dummy (yes=1, no=0) 0.15

Stanford or UC-San Francisco dummy (yes=1) 0.12

National Cancer Institute dummy (yes=1, no=0) 0.05

Index of wages 0.86

INDICATOR OF COMMERCIAL POTENTIAL
Number of human genetic sequences 1.54
(Human = gequence type 1 or type 4)

REGIONAL VARIABLES
New biotech enterprises in region (count) 26.62
Top quality universities in region (count) 1.44
Average change in citations of other stars

in same region while affiliated or link to firm 0.19

Average change in citations of other stars
in different region while affiliated or linked to firm 0.15

DICATORS OF SIZE QF SOCIAL. NETWORKS

Proportion coauthors from different institutions 0.31
Nuraber of times star changes univ. or res. inst. 2.35
DEPENDENT VARIABLE

Star scientist movement to firm (1 = period star

is first affiliated or linked, O otherwise) 0.39
N =248
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0.20
10.79
1245.95
0.42
4.94
1.21

10.22
185.31
0.19
0.33

.50
0.67
0.35
0.32
0.22
0.18

5.30

23.51
1.18
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0.22
1.28

0.49
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1444

1967

o e ]
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Table 3

Duration Madel of Mobility to Firms of Star Scientists in the U.S.

Coefficients (standard errors})

Variables
model a

Constant 110,120
(57.840)

Gender of star scientist 0.220
(0.730)

Marital dummy -0.068
(0.432)

Age 0.157
(0,125

Age squared -0,001
(0.,001)

Number of children 0.068
(0,147

First year star publishes in GenBank -0.058 *
(0.028)

Nobel prize dummy

Tenure dummy

Total citations to articles in GenBank

Total number of articles in GenBank

University top quality dummy

University average reputation

Stanford or UC-San Francisco dummy

MIT or Harvard University dummy

National Cancer Institute dummy

Number of human genetic sequences

New biotech enterprises in region

Top quality universities in region

Proportion coauthors from diffsrent institutions

Number of times star changes univ, or res, inst.

Average change in citations of other stars in

same region while affiliated or linked to firm

Average change in citations of other stars in

different region while affiliated or linked to firm

Log Likelihood -160.676

Restricted Log Likelihood. -165.523

Significance levels: *p < 0.05, **p < 0.01, ***p =< 0.001
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model b

96.232
(78.432)
0.425
( 0.857)
0.479
( 0.515)
0,042
( 0.151)
-0.000
( 0.001)
0.017

0.735 #*
( 0.277)
0.238
(0.313)

-133.269
-165.523

model ¢

216,740 %%
( 0.013)

_0' 108 EES

( 0.044)
0.624

( 0.921)
0.453

( 0.472)
0.004 *x

( 0.001)
-0.022

(0.021)
0.711

( 0.534)
-0.415

(0.311)

0.090 *
( 0.039)
0,025 #*
( 0.009)
0,677 **
( 0.247)
1.657 *
( 0.708)
0,262
( 0.158)
0.776 **
(0.272)
0.171
(0.311)

-131.189
-165.523

model d

139.960*
(74.366)

-0.072
( 0.038)

0'm4 L& 2]
( 0.001)
-0.005
( 0.019)
0.387
( 0.472)

0.087 *
( 0.039)
0,023 %=
( 0.009)
- 0.689 **
(0.242)
1.518 %
( 0.697)

0,731 **
( 0.265)
-0.044
(0.292)

-134.441
-165.523




Table 4

Duration Model of Mobility to Firms of Star Scientists in the U.S.
Including Index of Wages at Current University or Research Institute

Variables

Constant

Index of wages at university or research institute
First year star publishes in GenBank
Nobel prize dummy

Tenure dummy

Total citations to articles in GenBank
Total number of articles in GenBank
University top quality dummy
University average reputation
Number of human genetic sequences
New biotech enterprises in region
Top quality universities in region

Proportion coauthors from different institutions

Number of times star changes university or res. inst,

Average change in citations of other stars

in same region while affiliated or linked to firm
Average change in citations of other stars

in different region while affiliated or linked to firm

Log Likelihood
Restricted Log Likelihood.

Coefficients (standard errors)

Model a Model b Model ¢
0.627 200.220%* 121.560
{0.664) (88.244) (74.554)
-1.266 -1.848 -1.685
(0.763) {1.055) {1.029)
-0.100* -0.062

(0.044) {0.038)

0.682

{0.956)

-0.330

{0.477)

0.005%* 0.004***

(0.001) {0.001)

-0.020 0.000

(0.023) {0.020)

0.653 0.305

{0.545) {0.485)

-0.480

{0.318)

0.089* 0.085%

{0.039) (0.038)

0.020% 0.018

(0.010) (0.010)

-0.499 -0.540%

{0.269) {0.261)

1.734* 1.568%

(0.716) (0.701)

0.275

{0.159)

0.846%% 0.797%*%

{0.276) {0.271)

-0.205 -0.067

{0.314) {0.293)
-164.088 -129.592 -133.040
-165.523 -165.523 -165.523

Significance levels: *p = 0.05,**p < 0.01, ***p < 0.001
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Table 5
Multinomial Logit Model of Cheice of Becoming Affiliated with or Linked to a Firm

Variables Coefficients (standard errors)

Affiliated Linked
Constant 518.520%*%* . 219.450%*
(159.870) (90.533)
First year star publishes in GenBank -0.264%%% 0. 112%*
(0.081) (0.046)
Total citations to articles in GenBank 0.022%%= 0,02k
(0.005) (0.005)
Total number of articles in GenBank -0.102* -0.011
(0.053) (0.028)
University top guality dummy 1.080 0.992
(1.102) (0.546)
Number of human genetic sequences 0,165 0.330%**
(0.284) (0.101)
New biotech enterprises in region 0.046* 0.021%*
(0.022) (0.011)
Top quality universities in region -0.748 -0.664%*
(0.537) (0.277)
Proportion coauthors from different institutions 1.146 1.863*
(1.819) (0.776)
Average change in citations of other stars 0.919 0.228
in same region while affiliated or linked to firm (0.598) (0.311)
Average change in citations of other siars -1.093 -0.187
in different region while affiliated or linked to firm (1.142) (0.331)
Log Likelihood -136.5233
Restricted Log Likelihood -216.0000

Significance levels: *p < (.05, **p < 0.01, ***p < 0.001
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