NBER WORKING PAPER SERIES

ON PORTFOLIO OPTIMIZATION: FORECASTING COVARIANCES AND CHOOSING THE RISK MODEL

Louis K.C. Chan
Jason Karceski
Josef Lakonishok

Working Paper 7039
http://www.nber.org/papers/w7039

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
March 1999

We thank Ravi Jagannathan (the editor), Narasimhan Jegadeesh, Neil Pearson, Jay Ritter, and two anonymous referees for their comments. The views expressed in this paper are those of the authors and do not reflect those of the National Bureau of Economic Research.
${ }^{\text {© }} 1999$ by Louis K.C. Chan, Jason Karceski, and Josef Lakonishok. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including ${ }^{\circledR}$ notice, is given to the source.

On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model
Louis K.C. Chan, Jason Karceski, and Josef Lakonishok NBER Working Paper No. 7039
March 1999
JEL No. G11, G12

Abstract

We evaluate the performance of different models for the covariance structure of stock returns, focusing on their use for optimal portfolio selection. Comparisons are based on forecasts of future covariances as well as the out-of-sample volatility of optimized portfolios from each model. A few factors capture the general covariance structure but adding more factors does not improve forecast power. Portfolio optimization helps for risk control, but the different covariance models yield similar results. Using a tracking error volatility criterion, larger differences appear, with particularly favorable results for a heuristic approach based on matching the benchmark's attributes.

Louis K.C. Chan
Department of Finance
College of Commerce and Business Admin.
University of Illinois
1206 South Sixth Street
Champaign, IL 61820
Josef Lakonishok
Department of Finance
College of Commerce and Business Admin.
University of Illinois
1206 South Sixth Street
Champaign, IL 61820
and NBER

Jason Karceski
Department of Finance
School of Business Administration
University of Florida
Gainesville, FL 32611

The roots of modern investment theory can be traced back to the seminal work of Markowitz $(1952,1959)$. The central notion is that investors should hold mean-variance efficient portfolios. In the past, however, mean-variance portfolio optimization was not widely implemented in practice. Instead, the focus of most investment managers has been on uncovering securities with high expected returns. At the same time, theoretical research on investments has concentrated on modelling expected returns. Similarly, empirical research focused on testing such equilibrium models, or documenting patterns in stock returns that appear to be inconsistent with these models.

Several trends suggest that professional investors are rediscovering the importance of portfolio risk management. There is mounting evidence that superior returns to investment performance are elusive. One study after another indicates that on average professional investment managers do not out-perform passive benchmarks. In turn, the popularity of indexation (see, for example, Chan and Lakonishok (1993)) has focused practical attention on methods of optimally tracking a benchmark, especially when full replication of the benchmark is not desired or not practical. The recent interest in asset allocation methods, including international diversification, has also spurred interest in portfolio optimization. Another factor is the increased use of sophisticated quantitative methods in the investment industry, together with increased computing power. In short, there is an increased emphasis on risk control in the investment management industry.

As it turns out, portfolio optimization can yield substantial benefits in terms of risk reduction. The following simple experiment provides some feel for the potential benefits of mean-variance optimization. In order to abstract from the problems of predicting expected returns, suppose the task is to find the global minimum variance portfolio. Similarly, to sidestep for now the thorny issues of predicting return variances and covariances, the investor is assumed to have perfect foresight about the future values of these statistics. There are non-negativity constraints on the weights since short-selling is expensive for individual investors and not generally permissible for most institutional investors. Further, to ensure that the portfolio is diversified, the weight of a stock cannot exceed 2 percent. Every year this hypothetical investor selects the global minimum variance portfolio from a set of 250 stocks that are randomly selected from domestic NYSE and Amex issues. The investor follows a buy-and-hold strategy for this portfolio over the next year. The experiment is repeated each year from 1973 to 1997 to give a time series of realized returns on the portfolio. The strategy yields a portfolio with a standard deviation of 6.85 percent per year. In
comparison, a portfolio made up of all the 250 stocks (with equal amounts invested in each stock) yields a standard deviation that is more than twice as large (16.62 percent per year). Everything else equal, the optimized portfolio's lower volatility implies that it should have a Sharpe ratio (the ratio of excess return to standard deviation) that is more than double that of its equally-weighted counterpart. To give an idea of how this might translate into returns, suppose that the return premium of equity portfolios over the riskfree rate is expected to be five percent per year. Then levering up the optimized portfolio can result in a portfolio with the same volatility as the equallyweighted portfolio, but with an expected return that is higher by seven percent. Accordingly, there are large potential payoffs to portfolio risk optimization.

An additional boost to interest in optimization techniques stems from how performance is evaluated in the investment industry. While the theory of optimal portfolio choice suggests that investors should be concerned with the variance of the portfolio's return, in practice investment decisions are delegated to professional money managers. The objectives of the different parties involved are not perfectly aligned (Lakonishok, Shleifer and Vishny (1992) discuss this problem). In particular, since managers are evaluated relative to some benchmark, it has become standard practice for them to optimize with respect to tracking error volatility (the standard deviation of the difference between the portfolio's return and the benchmark return). Roll (1992) provides the analytics for this approach.

Given the increasing emphasis on risk management and its potential payoffs, there is a proliferation of portfolio optimization techniques. Yet there has been a shortage of scientific evidence evaluating the performance of different methods for risk optimization. In particular, the benefits promised by portfolio optimization (either with respect to volatility or tracking error volatility) depend on the accuracy with which the moments of the distribution of returns can be predicted. This paper tackles one aspect of this issue, namely, how to forecast the future second moments of returns. We begin by looking at the case where the hypothetical investor is concerned with the volatility of the portfolio. We compare the performance of different methods of forecasting variances and covariances, with an eye to judging which models improve our ability to optimize portfolio risk. To this end, we assess the forecasting performance of different risk models on a statistical basis (mean absolute forecast errors and the correlations between forecast and realized values), and also on a more practical, economic basis (the realized volatility of optimized portfolios
based on a particular forecast of the covariance matrix).
We focus on forecasting the second moments, rather than expected returns, for two reasons. First, several studies examine the importance of the forecasts of mean returns for mean-variance optimization (Michaud (1989), Best and Grauer (1991), Chopra and Ziemba (1993), Winston (1993)). There is a general consensus among academics and practitioners that expected returns are notoriously difficult to predict, and that the mean-variance optimization process is very sensitive to differences in expected returns. At the same time, there is a common impression that return variances and covariances are much easier to estimate from historical data (Merton (1980), Nelson (1992)). Possibly, then, the second moments pose fewer problems in the context of portfolio optimization. While future covariances are more easily predictable than future average returns, our results suggest that the difficulties should not be understated. To illustrate this point we replicate the previous exercise on portfolio optimization but drop the assumption of perfect foresight. Instead, we use the past historical covariances and variances (known as of the portfolio formation date) as estimates of the future moments. In this more realistic setting the optimized portfolio's standard deviation is 12.94 percent per year. While optimization leads to a reduction in volatility (relative to an equally-weighted portfolio, where the standard deviation was 16.62 percent per year), the problem of forecasting covariances poses a challenge.

Second, we bring to bear on the issue of forecasting covariances the considerable literature that has developed on the sources of return covariation. One interpretation of these sources is that they represent common risk factors, and expected returns provide compensation for bearing such risks. In this light, our results help to validate different models of the sources of systematic risk. In other words, if a factor does not help to predict return covariation, then it is less plausible that such a factor represents a source of risk that is priced. In this regard, our work is in the same spirit as Daniel and Titman (1997), who tackle the issue from the standpoint of expected returns. Specifically, they ask whether the average return premiums on portfolios sorted by some attribute can be attributed to the common covariation of the portfolio returns.

Very early evidence on the efficacy of different models of return covariances is presented by Cohen and Pogue (1967), Elton and Gruber (1973), Elton, Gruber and Urich (1978), and Alexander (1978). Given the state of optimization techniques and computational technology at that time, these papers examined only a very small set of stocks over short time periods. More importantly, they
generally predate the large body of work on multifactor pricing models, so they examine only a limited set of risk models. There is also a related literature on the prediction of stock market volatility (see, for example, Pagan and Schwert (1990) and Schwert and Seguin (1990)). This line of research has not generally investigated its implications for the important issue of portfolio risk optimization. In recent work, Ledoit (1997) provides a detailed investigation of a shrinkage. estimator of covariances and applies it to portfolio optimization.

Our tests are predictive in nature: we estimate sample covariances over one period and then generate out-of-sample forecasts. The results can be summarized as follows. The future return covariance between two stocks is predictable from current attributes such as the firms' market capitalizations, market betas and book-to-market ratios. Such models generate a slight improvement in our ability to predict future covariances compared to forecasts based on historical covariances. Introducing additional factors, however, does little to improve forecasting performance. A particularly sobering result is that in all our models the correlation between predicted and future covariances is not large. For instance the correlation between past and future sample covariances is 34 percent at the thirty-six month horizon and much less (18 percent) at the twelve-month horizon.

Since the models' covariance forecasts move in the same direction as the realized covariances, they nonetheless help for portfolio risk optimization (as long as we impose constraints to limit the impact of estimation errors). The optimization exercises confirm that some form of portfolio optimization lowers portfolio volatility relative to passive diversification. However they also confirm that more complicated factor models do not outperform (in terms of reductions in portfolio volatility) simpler covariance models.

Extending our analysis to the case where the investor is concerned with tracking error volatility, sharper distinctions arise between the different covariance forecasting models. Intuitively, the focus shifts to identifying those combinations of stocks which align most closely with the benchmark's risk exposures or attributes. As long as these exposures are attainable given the sample of stocks, the problem is substantially simplified relative to the task of identifying the global minimum variance portfolio. In this respect, the tracking error criterion is less susceptible to errors that arise from forecasting the future volatilities and covariances of the factors. Accordingly, the tracking error volatility problem (which is the most commonly encountered in practice) highlights much more dramatically the issue of how best to optimize. In general, we find that adding information from
more factors helps to reduce tracking error volatility. Moreover, an approach which works well is one that circumvents the measurement errors in estimating factor loadings, and instead directly matches the benchmark portfolio along a number of attributes.

The remainder of this paper proceeds as follows. Section 1 provides some background to our study by emphasizing the severe problems that we shall face in predicting return covariances.. Section 2 outlines some of the different models we examine, and section 3 provides evidence on their forecast performance. The results of our optimization exercises with respect to total variance are reported in section 4. Extensions to the problem of minimizing tracking error volatility relative to several benchmarks are provided in section 5. Section 6 concludes the paper.

1. The behavior of stock return variances and covariances

To set the stage for our analysis, we first provide some evidence on the structure of return variances and covariances. Table 1 reports the distribution of sample variances, covariances and correlations of monthly returns on three sets of stocks. Each set is drawn in April of every year from 1968 to 1998. Sample moments of returns on each set of stocks are calculated over the preceding sixty months. The distribution is based on the estimated statistics pooled across all years.

The first sample (panel A) comprises 500 stocks selected from the population of domestic common stock issues on the NYSE and Amex. Closed-end funds, Real Estate Investment Trusts, trusts, American Depository Receipts and foreign stocks are excluded from the analysis. To mitigate the problems associated with low-priced stocks, the sample includes only stocks with prices above $\$ 5$. The average monthly stock return variance is 0.0098 , corresponding to an annualized standard deviation of about 34.29 percent. The average pairwise correlation is 0.28 , indicating that there are potentially large payoffs to portfolio diversification.

Panels B and C check whether the second moments of stock returns are related to firm size. In panel B, the sample comprises all NYSE and Amex firms with equity market capitalization in excess of the eightieth-percentile of the size distribution of NYSE firms. Similarly, panel C examines all NYSE and Amex firms with equity market capitalization below the twentieth percentile of the NYSE size distribution. On average, small stocks display return variances that are almost three times those of large stocks. The average variance for small firms is 0.0181 (equivalent to an
annualized standard deviation of 46.60 percent) compared to 0.0067 for large firms (or an annualized standard deviation of 28.35 percent). Small stocks also tend to exhibit higher average pairwise covariances compared to large stocks (0.0042 and 0.0021 , respectively). However, the average correlation between small stocks is only 24 percent, whereas the average correlation between large stocks is 33 percent.

Further, the distributions of the estimated statistics show substantially larger dispersion within the group of small firms. Sample variances for small firms, for instance, range from 0.0011 to 0.1241 . In the category of large firms the range is from 0.0014 to 0.0336 . Similarly, the covariances within small firms run from -0.0128 to 0.0463 while the covariances within large firms extend from -0.0031 to 0.0144 . The inter-quartile spreads of these statistics confirm the differences between small and large firms.

Conventional wisdom suggests that two stocks in the same industry tend to be more highly correlated than two stocks in different industries, since they are likely to be affected by common events. Table 2 checks up on this intuition. Each year we classify stocks into one of 48 industries on the basis of the industry definitions from Fama and French (1997). Correlations are averaged across all pairs of stocks from the same industry and also across all pairs of stocks from different industries. To reduce clutter, we present results only for the largest industries in terms of market capitalization and with the largest number of firms.

Panel A of Table 2 indicates that the correlation between two stocks is on average larger when they are from the same industry than when they belong to different industries. The difference is particularly striking for stocks in the utility, petroleum, banking, and insurance industries. This may be taken as evidence that these particular industries tend to be more homogeneous groupings than the others.

In the remaining panels of Table 2 we partition firms within an industry into two sets. Large stocks (panel B) have market capitalization exceeding the median size of NYSE firms in the industry. We calculate the average pairwise correlations between a large stock and: large stocks in the same industry; large stocks in all other industries; small stocks in the same industry.

The differences between the within-industry and across-industry correlations stand out even more strongly for large firms. In the case of large utility stocks, for example, the average withinindustry correlation is 0.4570 while the average correlation with large stocks in all other industries is
0.2417 , yielding a difference of 0.2153 . As further evidence of the strong tendency for large stocks to move together, note that in many cases the correlation between large stocks across different industries is as high as the within-industry correlation between large and small stocks.

Panel C repeats the exercise for small stocks (with market capitalization below the NYSE median in an industry). Here the results reinforce the conclusions from Table 1 about the variation. across small stocks. Compared to large stocks, the correlations between small firms are lower, even when they share the same industry affiliation. The difference between the within-industry and across-industry average correlation is also less sharp. Perhaps most tellingly, on average a small stock shows less correlation with another small stock in the same industry than with a large stock in the same industry. For example, the average correlation between two small utility stocks is 0.3394 , while the average correlation between a small utility stock and a large utility stock is 0.3697 .

The upshot of this section is that there is good news and bad news. The good news is that stock return variances and covariances display some structure. There is encouraging evidence that certain characteristics, such as firm size and industry affiliation, tell us something about the variances and covariances of returns. The bad news is that this information may be useful only in a minority of cases. As standard textbook discussions suggest, the number of covariance terms far outweighs the number of variance terms. There are also far more pairwise combinations of stocks that differ with respect to industry affiliation than there are pairs of stocks from the same industry. As a result, the patterns documented in this section may not help us very much in terms of predicting most elements of the variance-covariance matrix.

2. Predicting stock return covariances

Given our focus on portfolio risk optimization, we concentrate on directly predicting return covariances (forecasts of variances are discussed in a subsequent section). We employ a number of different forecasting models for this purpose. Each forecasting model is applied to the returns on a sample of stocks drawn from the universe of domestic common equity issues listed on the NYSE and Amex. Given our earlier evidence on the noisiness with which covariances are estimated for small stocks, we exclude stocks that fall in the bottom twenty percent of market capitalization based on NYSE breakpoints. Stocks trading at prices below $\$ 5$ are also excluded. Out of the remaining
stocks we randomly select 250 in April of each year from 1968 to 1997. Forecasts are generated based on the past sixty months of prior data (the estimation period).

2.1. Full covariance matrix forecasts

The starting point for forecasting return covariances is given by the sample covariances based on . the estimation period. For example, the sample covariance between stocks i and j is given by:

$$
\begin{equation*}
\operatorname{cov}_{i j}=\frac{1}{59} \sum_{k=1}^{60}\left(r_{i t-k}-\bar{r}_{i}\right)\left(r_{j t-k}-\bar{r}_{j}\right) \tag{1}
\end{equation*}
$$

where $r_{i t}$ is the return in excess of the monthly Treasury bill return for stock i in month t and \bar{r}_{i} is the sample mean excess return. ${ }^{1}$ The sample covariances, however, are very sensitive to outlier observations (see Huber (1977)).

2.2. Covariance forecasts from factor models

Forecasts from the full covariance matrix model may reflect firm-specific events that happen to affect several stocks at the same time, but which are not expected to persist in the future. An alternative approach would be to strip out the idiosyncratic components of the covariance by introducing pervasive factors that drive returns in common. One such formulation is given by the strict factor model of security returns:

$$
\begin{equation*}
r_{i t}=\beta_{i 0}+\sum_{j=1}^{K} \beta_{i j} f_{j t}+\epsilon_{i t} . \tag{2}
\end{equation*}
$$

Here $f_{j t}$ is the j-th common factor at time t, and $\epsilon_{i t}$ is a residual term. The coefficients $\beta_{i j}$ give the loadings, or sensitivities, of stock i on each of the K factors. Assuming that these factors are uncorrelated with the residual return and that the residual returns are mutually uncorrelated, the covariance matrix V of the returns on a set of N stocks is given by

$$
\begin{equation*}
V=B \Omega B^{\prime}+D \tag{3}
\end{equation*}
$$

where B is the matrix of factor loadings of the stocks, Ω is the covariance matrix of the factors and D is a diagonal matrix containing the residual return variances.

[^0]We use a variety of factor models. In each case we use the sixty months of data over the estimation period to obtain the factor loadings of a stock. The factors are measured as the returns on mimicking portfolios, as in Chan, Karceski and Lakonishok (1998). The mimicking portfolio returns over the prior sixty months also provide an estimate of the covariance matrix of the factors, Ω. The estimated loadings and residual variances, together with the factor covariance matrix, serve. as the inputs to equation (3).

Results are reported for the following factor models. Full details on the measurement of the factors are contained in Appendix A. A one-factor model uses the excess return on the valueweighted market index as the single factor. This model corresponds to the standard CAPM or single-index model. The three-factor model augments the value-weighted market index with size and book-to-market factors. This model has been proposed by Fama and French (1993). The remaining models introduce additional factors that have been found to work well in capturing stock return covariation (see Chan, Karceski and Lakonishok (1998)). Specifically, a four-factor model includes, along with the three Fama-French factors, a momentum factor. This latter factor captures the tendency for stocks with similar values of past six-month return (measured over the period from seven months to one month ago) to behave similarly over the future with respect to their returns. Along the same lines, an eight-factor model captures the idea that the covariance between two stocks' returns depends on their sensitivities to the market factor as well as factors associated with firm size, book-to-market, momentum, dividend yield, cash flow yield, the term premium and the default premium. The ten-factor model comprises these factors along with mimicking portfolios for the beta factor (the return spread between a portfolio of high-beta stocks and a portfolio of low-beta stocks) and a long-term technical factor (based on stocks' cumulative returns measured over the period from sixty months to twelve months ago).

2.3. Forecasts from a constant covariance model

This forecasting model assumes that all pairwise covariances between stocks are identical:

$$
\begin{equation*}
\operatorname{cov}_{i j}=\overline{\operatorname{cov}} \tag{4}
\end{equation*}
$$

We estimate the constant covariance, $\overline{c o v}$, as the simple mean across all pairwise stock return covariances from the estimation period. Equation (4) can be thought of as a version of a James-

Stein estimator which shrinks each pairwise covariance to the global mean covariance (while giving no weight otherwise to the specific pair of stocks under consideration). As one motivation for this approach, the noise in stock returns and the resulting estimation error suggest that it may be unwise to make distinctions between stocks on the basis of their sample covariances. Instead, it may be more fruitful to assume that all stocks are identical in terms of their covariation. ${ }^{2}$

3. Empirical results

3.1. Covariance forecasts

At the end of April in every year of the sample period the forecasts from each model are compared to the sample covariance estimates realized over a subsequent period. We report the results from two forecasting experiments. In the first experiment, we measure realized covariances over the subsequent twelve months (the test period), while in the second experiment the realized covariances are based on a thirty-six month test period. The lengths of the test periods are chosen to correspond to realistic investment horizons. Note that since the forecasts are generated using a period disjoint from the test periods, the tests are predictive in nature.

Panel A of Table 3 provides summary statistics on the forecasted covariances from each model. Forecasts from the historical full covariance model display the largest standard deviation (0.18 percent) of all the different models, suggesting that straightforward extrapolation from the past may be overly accommodative of the data. In comparison, the different factor models tend to smooth out the covariances, yielding less extreme forecasts. The standard deviation of forecasts from a one-factor model is 0.14 percent, while the multifactor models share similar standard deviations of about 0.16 percent. Since the historical full covariance model is a limiting case where there are as many factors as there are stocks, the general impression is that the high-dimensional factor models are prone to making overly bold predictions. As the dimensionality of the factor model grows, there is an increasing chance that the model snoops the data, resulting in overfitting.

The remaining panels of Table 3 compare each model's forecasts with realized sample covariances

[^1]estimated over the subsequent twelve months (panel B) or over the subsequent thirty-six months (panel C). Forecast performance is first evaluated in terms of the distribution of the absolute difference between the realized and forecast values. The single-factor model turns in the lowest mean and median absolute error. Since it is the most conservative of the factor models in terms of the dispersion of its forecasts, the one-factor model is apparently not penalized as heavily as the other models. By the same token, while the average covariance model has a large mean absolute error, it nonetheless does not do disastrously. Its performance is on par with the full covariance model, which has the highest mean absolute forecast error (the median absolute error gives roughly the same ordering). The differences in the performances of the models are slight, but the striking message is that more factors do not necessarily give rise to smaller forecast errors.

The last two columns of panel B provide additional measures of the models' forecast performance. Specifically, we regress the realized values on the predicted values and recover the slope coefficient and the correlation coefficient from this regression. Note that while the mean absolute error criterion penalizes a model for making overly bold predictions, the correlation coefficient focuses more on whether the predictions tend to be in the same direction as the realizations. ${ }^{3}$ As the high-dimensional models are more likely to overfit the data, the slope coefficients on their forecasts are more attenuated relative to the simpler models. For example, the slope coefficient on the forecasts from the one-factor model is 0.5435 , compared to 0.3589 for the full covariance model and 0.4488 for the ten-factor model. In terms of the correlations between forecasts and subsequent realizations, there is little to distinguish between a three-factor and a ten-factor model. The correlations for the full covariance and one-factor models stand apart from the others, but for different reasons. In the case of the one-factor model the correlation is only 0.1643 , suggesting that exposures to market risk do not fully capture variation in realized covariances. For the full covariance model, the large dispersion of its forecasts pull down the correlation to 0.1792 .

When the forecasts are compared to covariances realized over the subsequent thirty-six month test period (panel C), the average absolute forecast errors are reduced. For instance the mean absolute error for the full covariance model is 0.0040 for the twelve-month test period, compared to 0.0019 for the thirty-six month test period. The drop in forecast errors suggests that there is a lot of

[^2]noise in covariances measured over a period as short as twelve months. As additional confirmation, the correlations between forecasts and realizations are higher over the thirty-six month test period than over the twelve-month test period. Nonetheless, the same general impressions emerge as for panel B. In particular, extending the number of factors beyond a relatively small set does not lead to superior forecasting performance. ${ }^{4}$

3.2. Additional results

In additional work we extend our results in two directions: forecasting correlations, and modifying the factor models. When we repeat the forecasting exercises for correlations, we find that the relative performance of the different models is quite similar to their performance in forecasting covariances. The various factor models differ only slightly in terms of their mean absolute errors. In particular, the constant correlation model actually generates the lowest mean absolute errors in forecasting correlations. In general the results suggest that it is harder to predict correlations than covariances. For the thirty-six month test period, for example, the correlation between past and future correlations averages 24 percent across the different models, compared to an average correlation of about 35 percent between past and future covariances. ${ }^{5}$

The overall verdict from Table 3 is that the various models for forecasting covariances generally perform quite similarly. The factor models yield somewhat smaller absolute errors than the full covariance model, but the forecast errors provide little discrimination between a three-factor model and a ten-factor model. Indeed, assuming that all pairwise covariances are constant would not lead to much worse performance. Yet, as the correlations in Table 3 suggest, the factors are able to capture the direction in which realized covariances vary with beta, size and other risk exposures. Why then isn't there a more appreciable improvement from models with multiple factors? Factor

[^3](or index) models are so widely used in financial research and investment practice that we feel compelled to dig deeper and examine what implementation aspects may be hurting the models' performance. In Appendix B we explore two such aspects: the timeliness of stocks' estimated exposures, and the functional form implied by the factor model in equation (3). In general, we find that modifications to address these potential problems do not alter our conclusions.

3.3. Variance forecasts

We also apply several different models to forecast return variances. The setup and results for our variance forecasting procedures is described in Appendix C.

The results for forecasting variances (Table C1), when placed alongside the results for covariances, suggest that variances are relatively more stable, and hence easier to predict, than covariances. Past and future return covariances (measured over the subsequent thirty-six months) have a correlation of 33.94 percent (Panel C, Table 3), while the same correlation for variances is 52.55 percent. As in our earlier results, however, higher-dimensional models do not necessarily raise forecasting power.

In terms of forecasting return covariances and variances, our bottom line is as follows. There is some stable underlying structure in return covariances. Factor models help to improve forecast power, but there is little to distinguish between the performance of a three-factor model and a ten-factor model. Modifications of the factor model structure, such as relaxing the model's linear structure or having more timely information on loadings and attributes, do not salvage the models. The situation is somewhat improved when it comes to forecasting variances. Future variances are relatively more predictable from past variances, and hence the models' forecast performance is relatively stronger.

4. Applying the forecasts: portfolio optimization

4.1. The global minimum variance portfolio

An important reason for forecasting the variances and covariances of returns is to provide inputs into the portfolio mean-variance optimization problem. The perils of forecasting expected returns are well-known. In terms of forecasting the second moments, our results from the previous sections
suggest that there are relatively minor differences between the various models' performance. In this sense the choice of a particular model for the second moments may matter less from the standpoint of optimization. The weights for an optimized portfolio (with additional constraints on the weights) are complicated functions of the forecasts, however. It is thus not straightforward to assess the economic impact of errors in forecasting the second moments. In this section we report the results of several portfolio optimization exercises. These let us judge how the forecasting performance of the different models translates into the realized variance of the optimized portfolio's returns. Since we place constraints on the portfolio weights the optimization exercises also let us tame the occasional bold forecasts from some of the covariance forecasting models. In this respect a more meaningful comparison across the models can emerge. From both the technical and practical standpoint, therefore, the optimization experiments provide perhaps the most important metric for evaluating the models.

The setup of our portfolio optimization experiments is as follows. To highlight the role of the second moments, our goal is to form the global minimum variance portfolio (any other point on the efficient frontier would put some emphasis on forecasts of expected returns). In April of each year from 1973 to 1997, we randomly select 250 stocks listed on the NYSE and on Amex. ${ }^{6}$ We use our different models to generate forecasts of future variances and covariances for these stocks. These estimates are the inputs to a quadratic programming routine. In the interest of making the experiments correspond as closely as possible to actual practice, several other constraints are imposed. Portfolio weights are required to be non-negative, since short-selling is not generally a common practice for most investors. In order to mitigate the effects of forecast errors, we also impose an upper bound of two percent on the portfolio weights. ${ }^{7}$ Given the optimized weights, we calculate buy-and-hold returns on the portfolio for the subsequent twelve months, at the end of which the forecasting and optimization procedures are repeated. The resulting time series of monthly returns lets us characterize the performance and other properties of optimized portfolios based on each of our forecasting models.

Table 4 summarizes the optimization results from several different models. For the sake of

[^4]brevity, we report the results for different covariance models, but all are based on one model for forecasting variances, namely, a model using regression-adjusted historical variances. Panel A of the table evaluates each portfolio's performance in terms of its average monthly return, standard deviation, Sharpe ratio and its tracking error volatility (the volatility of the monthly difference between the portfolio's return and the return on the S\&P 500 index). These are all expressed on an annualized basis. Also reported is the correlation between the portfolio's return and the return on the S\&P 500 index, as well as the average number of stocks in each portfolio with weights above 0.5 percent.

To provide some background, we present results for two simple diversification strategies that involve no optimization, namely the value-weighted and equally-weighted portfolios made up of the same stocks available to the optimizer. An investor who diversifies by investing equal amounts in each of the 250 available stocks would experience an annualized standard deviation of 16.62 percent. On the other hand a value-weighted portfolio takes larger positions in some stocks than in others, but the tendency for larger stocks to have low volatilities pulls down the overall standard deviation to 15.54 percent. In comparison, it is clear that some form of optimization helps. The annualized standard deviation of the optimized portfolio based on the full covariance model is 12.94 percent. Looked at from another standpoint, the same optimized portfolio has a Sharpe ratio of 0.6405 while the Sharpe ratio for the equally-weighted portfolio is 0.6027 .

As in our earlier forecasting exercises, the different covariance models generally provide similar results. To single out two cases, for example, the full covariance model yields an annualized standard deviation of 12.94 percent while the corresponding statistic for the three-factor model is 12.66 percent. As a further illustration of the general point that more complicated models do not necessarily do better, the prize for the single model generating the lowest prospective standard deviation goes to model 5 , which assumes that covariances are proportional to the product of the stocks' return volatilities. This model essentially sets all pairwise correlations between stocks to a constant and takes advantage of the relative stability of return variances. When covariance forecasts are generated by a composite model (model 7 in Table 4), the standard deviation of the optimized portfolio drops to 12.59 percent. ${ }^{8}$

[^5]Panel B of Table 4 provides further clues as to why the different models perform so similarly. We report four characteristics of each portfolio: its beta relative to the value-weighted CRSP market index, the average size (in logarithms), average book-to-market ratio and the average dividend yield of the stocks in the portfolio. To ease comparison, each characteristic is also expressed as a decile ranking (with one being the lowest and ten being the highest). In addition we also report the percentage of the portfolio invested in two industries, namely firms with the first two digits of the SIC code of 35 or 36 (Industrial, Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and firms with 2-digit SIC code of 49 (Electric, Gas and Sanitary Services). These two industries display considerable differences in terms of features such as return volatilities and market betas. Each of the reported characteristics is measured as of the portfolio formation date, and are averaged over all portfolio formation years.

A striking feature of the optimized portfolios is that they all select stocks with low betas. While the equally-weighted portfolio of all the candidate stocks has an average beta of 1.07 (placing it roughly in the fifth decile), the betas of the optimized portfolios fall between 0.5 and 0.7 (the average decile ranking is below 2). This emphasis on stocks with low betas may help to explain why the portfolios tend to tilt somewhat toward larger stocks, and toward value stocks. For the same reason, the portfolios all select a preponderance of utility stocks, which tend to have low betas and low return volatilities as well. At least forty percent of each optimized portfolio is invested in the utility industry (SIC code 49). This is to be compared with a weight of 8.66 percent for utilities in the value-weighted portfolio and 15.31 percent in the equally-weighted portfolio. In other words, the optimizer selects basically every utility it is presented. At the same time the weight given to stocks in SIC codes 35 - 36 is relatively puny (never more than 4 percent for the optimized portfolios). As Fama and French (1997) document, industries 35-36 tend to have higher than average market betas.

4.2. Interpretation

The results of the variance-minimization exercises suggest the following interpretation. One key conclusion is that there is a major factor which is more important than the other influences on
returns. ${ }^{9}$ This dominant influence, the market, tends to overpower the remaining factors, so that their incremental informativeness becomes very difficult to detect. This accounts for why the different factor models generate similar forecast results.

Put another way; portfolio p 's variance ν_{p} from the factor model (2) is

$$
\begin{equation*}
\nu_{p}=\sum_{j=1}^{K} \beta_{p j}^{2} \omega_{j}+\delta_{p} . \tag{5}
\end{equation*}
$$

Here ω_{j} is the variance of the j-th factor, δ_{p} is the variance of the idiosyncratic return, and (solely for expository convenience) it is assumed that the factors are mutually uncorrelated. If the largest part of the variance is due to the variance of the market factor, then what the optimizer tends to do in each case generally is not very surprising. Namely, the optimizer seeks stocks with low market betas, such as utility stocks. Further, as an empirical matter stocks with low market betas generally tend to have low residual variances and low total return volatilities as well. Any covariance model that exploits these patterns will tend to yield generally similar results (and tend to do better than the passively-diversified equally-weighted or value-weighted portfolios). As a result, the differences between the performance of the optimized portfolios are not particularly dramatic. Since the role of the remaining factors is obscured by the major factor, there appears to be little benefit from obtaining finer breakdowns of the systematic component of the volatility.

As one way to calibrate the relative importance of the different factors, we use the asymptotic principal components method of Connor and Korajzyck (1988). Five factors are extracted from the monthly returns of all NYSE-Amex issues over the five-year period ending on April 1998. To capture the average-case situation, we partition the sample variance of the equally-weighted CRSP index into the proportions attributable to each principal component. The first factor accounts for 75 percent of the variability of the index. The proportions captured by the remaining four principal components pale in comparison (they amount to 6.9 percent, 3.6 percent, 8.8 percent and 5.6 percent respectively). In short, after accounting for the dominant influence of the first factor, further refinements do not offer a great deal of improvement.

This line of thinking also suggests a way to structure our experiment to yield sharper differences

[^6]between the different covariance models. In particular if we can remove the impact of the dominant market factor the importance of the remaining factors may emerge more clearly. As it turns out, this problem is a specific case of tracking a benchmark portfolio, which occurs much more commonly in practice than the variance-minimization problem.

5. Minimizing tracking error volatility

5.1. The minimum tracking error volatility portfolio

In practice, mean-variance optimization is much more commonly applied in a different context. Since professional investment managers are paid to outperform a benchmark, they are in general not concerned with the absolute variance of their portfolios, but are concerned with how their portfolio deviates from the benchmark. Underperforming the benchmark for several years typically results in the termination of a manager's appointment. The objective in this case is to minimize the portfolio's tracking error volatility, or the volatility of the difference between a portfolio's return and the return on the benchmark. In the context of the factor model, the generating process for the return difference is

$$
\begin{equation*}
r_{p t}-r_{B t}=\beta_{p 0}-\beta_{B 0}+\sum_{j=1}^{K}\left(\beta_{p j}-\beta_{B j}\right) f_{j t}+\left(\epsilon_{p t}-\epsilon_{B t}\right) \tag{6}
\end{equation*}
$$

where $r_{p t}$ and $r_{B t}$ are the returns on the portfolio and on the benchmark, respectively, at time t , and their factor loadings are given by $\beta_{p j}$ and $\beta_{B j}$ for $j=0,1, \ldots, K$. Accordingly, a portfolio whose loadings come close to matching the benchmark's would do a good job in minimizing the volatility of excess returns, τ_{p} :

$$
\begin{equation*}
\tau_{p}=\sum_{j=1}^{K}\left(\beta_{p j}-\beta_{B j}\right)^{2} \omega_{j}+\psi_{p} \tag{7}
\end{equation*}
$$

where for ease of exposition it is assumed that the factors are mutually uncorrelated.
The benchmark's loadings can be estimated and used as anchors for the desired portfolio's exposures. Then the problem of minimizing tracking error volatility is, at least potentially, much simpler than the problem of minimizing the global portfolio variance. Whether this turns out to be the case depends on the benchmark having exposures that can be matched by some feasible portfolio of the sample of candidate stocks. The variance-minimization criterion discussed in the
previous section sets the benchmark to be the riskless asset with zero exposures on all the factors. In this instance, as long as we insist on non-negative weights, and as long as most stocks have exposures to the important factors that are of the same sign, all the different models will have an equally hard time. Similarly, there will not be notable differences across the models if the problem were to use, for example, utility stocks to track a single issue like Netscape.

Given that the market factor is the most important, suppose instead our benchmark is a portfolio whose market exposure is not too unrepresentative of the market betas of the underlying set of stocks. It is then a less challenging problem to minimize the role of this dominant source of return variability, since the difference between the market betas of the portfolio and the benchmark can be set close to zero. As a result, the incremental importance of any remaining factors in the decomposition (7) becomes easier to detect, so there may be richer opportunities to discriminate between the different covariance models.

We implement the tracking error optimization problem as follows. We choose the S\&P 500 index as the benchmark. The minimum tracking error volatility portfolio can be found by expressing every stock's return in excess of the return on this benchmark, and solving for the portfolio which has the lowest variance of excess returns. In every other respect, we maintain the same constraints as in the previous set of optimization exercises (non-negative weights and an upper bound of two percent).

Panel A of Table 5 summarizes the performance of the minimum tracking error volatility portfolios. The results are based on several different models for forecasting the covariance of excess returns. In every case, the forecasted variance is set to be the regression-adjusted variance of the most recent past sixty monthly excess returns (over the S\&P 500).

As we had hoped, simplifying the problem generates more discrimination between the different covariance models. The annualized tracking error volatility of the equally-weighted portfolio is 6.16 percent, while a three-factor model reduces the tracking error volatility down to 4.53 percent. Adding more factors gives rise to lower volatility relative to the benchmark. For example, a ninefactor model results in a tracking error volatility of 4.01 percent.

The link between this finding and our earlier forecasting results is actually quite natural. In the earlier case of minimizing portfolio variance, return covariances between stocks are generally positive and the portfolio weights are non-negative by design. Hence the dominant component of
the portfolio's variance comes from the covariance terms. As our forecasting exercises suggest, the various models all perform with roughly the same degree of success at predicting future covariances. Accordingly, the models do not differ much when it comes to minimizing portfolio variance. In the case of tracking error volatility, on the other hand, the covariances of returns in excess of the market return can be positive as well as negative. There is therefore more scope, even with non-negative. weights, for the optimizer to cancel out the covariance component of the portfolio's tracking error volatility. ${ }^{10}$ Furthermore, the different models display more dispersion in terms of the association between the forecasted and realized excess return covariances. At the thirty-six month horizon, for instance, the correlation between forecasts and realized excess return covariances is 0.13 for the full covariance model. For the one-factor model the correlation is 0.14 , and it is 0.20 for the three-factor model. As a result, there is more room to differentiate between the different models when the objective is to minimize tracking error volatility.

To ensure that our findings are not sample-specific, we also replicate the experiment in Table 5 two hundred times for each of our different models. In each replication we draw a different set of stocks to carry out the minimization with respect to tracking error volatility. The results confirm the general pattern of differences across the models in Table 5. For example, the tracking error volatility averaged over all 200 replications is 3.99 percent for the full covariance model, compared to 5.11 percent for the one-factor model and 4.54 percent for the three-factor model. The average differences in tracking error volatilities across the factor models are large and statistically significant. Comparing the one- and three-factor models, for example, the mean difference in tracking error volatility is 0.57 percent (with a standard error of the mean of 0.01 percent).

In panel B, we assess how closely each model matches up with the benchmark along several attributes, and whether the degree of alignment is associated with the realized tracking error volatility. In this way we can pinpoint potentially relevant determinants of a portfolio's risk profile. We take the characteristics of the value-weighted index of the thousand stocks with highest market capitalization to be our proxy for the benchmark portfolio's characteristics. ${ }^{11}$ Given these features

[^7]of the target, for each model we also report in the column denoted MAD the mean absolute difference (across portfolio formation years) between the characteristics of the optimized portfolio and the benchmark.

Comparing the results of the full covariance model and the one-factor model brings out clearly the importance of non-market sources of return covariation. The one-factor model concentrates on coming close to the benchmark's market exposure (the average absolute difference is 0.0277). It does so at the expense of deviating considerably from the benchmark in terms of size, book-to-market and dividend yield (the average absolute differences are the largest of all the optimized models in Table 5). The focus on beta is evidently not enough, for the resulting tracking error volatility is relatively large (5.12 percent). In comparison, the full covariance model delivers small deviations from the benchmark on all four dimensions and comes up with a lower tracking error volatility (4.03 percent). More generally, the results suggest that a higher-dimensional model should provide more opportunities to narrow any potential divergence from the benchmark's risk exposures. For example, the tracking error volatility under the nine-factor model (4.01 percent) is lower than under the one-factor model. Given, however, the possibility of data-snooping, requiring the optimized portfolio to be aligned with the benchmark on a host of dimensions may ultimately become counterproductive. This may explain why the tracking error volatilities for the full covariance model and for the nine-factor model are roughly comparable.

The results for the value-weighted portfolio of all the 250 stocks provide further testimony to the strong covariation among large stocks. This portfolio comes closest to the benchmark on all the reported attributes, except for beta, in terms of mean absolute differences. The resulting tracking error volatility is 3.04 percent, the lowest of all the models in panel A. Since the benchmark in this case comprises large stocks, however, the performance of the value-weighted portfolio may not hold for other choices of benchmark. ${ }^{12}$

Roll (1992) shows that a portfolio that is optimized with respect to tracking error volatility will in general not be mean-variance efficient. A comparison of Tables 4 and 5 lets us quantify the difference between the two criteria. Optimizing with respect to tracking error volatility (Table 5)

[^8]yields portfolios that have larger standard deviations than the portfolios that are optimized with respect to return volatility (Table 4). The average difference is quite large and is on the order of two percent. Insofar as the emphasis in practice on tracking error volatility reflects a mismatch between the objectives of the portfolio manager and those of the ultimate investor, then the two percent difference is an estimate of the cost of this mismatch.

5.2. Tracking error volatility minimization by matching on attributes

The models of the previous subsection attempt to minimize tracking error volatility by forming portfolios whose factor loadings come close to the benchmark portfolio's loadings. Since the loadings must be estimated, this approach may be handicapped by estimation errors. For example, there is nothing to prevent the optimizer from choosing small stocks to track the S\&P 500 index if these small stocks happen to have past estimated loadings which coincide with the benchmark's. An approach which is less prone to measurement errors may give better results. In this regard, it is intriguing to note that the value-weighted portfolio of the 250 sample stocks yields the lowest tracking error volatility in Table 5. As one way to formalize this observation, suppose that the cross-section of returns is given by the following model: ${ }^{13}$

$$
\begin{equation*}
r_{i}-r_{f}=\sum_{j=1}^{K} Z_{i j} f_{j}+u_{i} \tag{8}
\end{equation*}
$$

where $Z_{i j}$ is stock i 's risk descriptor (or exposure) with respect to the j-th common factor f_{j}. The difference between portfolio p's return and the benchmark return is thus

$$
\begin{equation*}
r_{p}-r_{B}=\sum_{j=1}^{K}\left(Z_{p j}-Z_{B j}\right) f_{j}+\left(u_{p}-u_{B}\right) . \tag{9}
\end{equation*}
$$

From this perspective, matching the benchmark with respect to the observable attributes $Z_{B j}$, such as size or dividend yield, is another way to reduce tracking error volatility. ${ }^{14}$

Table 6 reports the results from this alternative approach to minimizing tracking error volatility. Again, Appendix D contains details on the different models. In general, matching the benchmark

[^9]by attributes gives rise to lower tracking error volatilities, compared to the results in Table 5. For example, the approach using loadings from a nine-factor model (model 4 in Table 5) generates a tracking error volatility of 4.01 percent, while a portfolio that matches the benchmark along the corresponding nine attributes (model 5 in Table 6) generates a tracking error volatility of 3.01 percent. As one way of putting this in perspective, it is quite common for investment managers. to be evaluated in terms of their information ratios (the portfolio alpha divided by tracking error volatility). In the above example, the nine-attribute matching procedure raises the information ratio by as much as a third.

While the factor loading approach offers the benefit of being directly based on the behavior of past returns, its advantage is more than offset by the measurement errors in the loadings. As a result, the current attributes of a portfolio provide more reliable indicators of its future tracking error. Indeed, in some cases the attribute matching procedure compares favorably with the ideal case of perfect foresight. In particular, the tracking error volatility under the full covariance model assuming perfect foresight about the future covariance matrix of excess returns is 1.57 percent (compared to roughly 3.25 and 3.01 percent for models 4 and 5 in Table 6). We also repeated the exercise in Table 6 two hundred times, drawing different sets of stocks in each trial. The overall conclusions are very similar. Notably, in every repetition the nine-attribute matching procedure gives rise to lower tracking error volatility than the corresponding nine-factor covariance model. The average reduction across the replications is 0.95 percent (the standard error of the mean is 0.01 percent).

One widely used approach to replicating an index is to match the benchmark's industry composition. Model 1 in Table 6 does this and yields an annualized tracking error volatility of 5.79 percent. Compared to the other models in Table 6, this clearly does not do well. Requiring that the portfolio match the benchmark's size composition as well as its industry composition reduces the tracking error volatility down to 4.60 percent (model 2). Indeed, of all the different attributes, size turns out to be the critical dimension on which to match. The size-matched minimum residual variance portfolio (model 3) has a tracking error volatility of 3.53 percent, which is close to the performance (3.01 percent) of the nine attribute model (model 5).

It would be premature, however, to conclude from this exercise that size is the only important attribute on which to match. In particular, this finding may be specific to the nature of the index
we used, namely large stocks making up the S\&P 500. To check up on this, Table 7 provides results for minimizing tracking error volatility relative to two other benchmarks. In Part I of the table, the benchmark is the value-weighted portfolio of the 250 stocks that are ranked highest by the ratio of book-to-market value of equity, while in Part II the value-weighted portfolio of the 250 stocks that are ranked lowest by the book-to-market ratio is the benchmark. These two reference portfolios. (the value stock benchmark and the growth stock benchmark, respectively) correspond in spirit to indexes that are widely used in practice to evaluate the performance of value- and growth-oriented investment managers.

In general, using the value or growth benchmarks leads to larger tracking error volatilities compared to the case of the S\&P 500 benchmark. For example, under the full covariance model, the tracking error volatility is 4.72 percent with respect to the value benchmark (part I, panel A) and 5.00 percent with respect to the growth benchmark (part II, panel A) as opposed to 4.03 percent with respect to the S\&P 500 index (Table 5). Matching by size only (model 4 in Table 7) would not be the most successful procedure. Under this approach, large differences from the benchmark arise with respect to other attributes. In particular, the average absolute difference between the book-to-market ratio of the size-matched portfolio and the value stock benchmark is 0.3881 while the average absolute difference with respect to dividend yield is 0.0156 . The corresponding differences for the growth stock benchmark are 0.2286 and 0.0120 respectively. Consequently, the tracking error volatility under the size-matching procedure is 4.61 percent relative to the value benchmark and 4.78 percent relative to the growth benchmark. Instead, matching on nine attributes yields the lowest tracking error volatilities (3.79 percent and 3.97 percent for the value and growth benchmarks, respectively). ${ }^{15}$

6. Summary and Conclusion

Although the concept of portfolio mean-variance optimization forms the backbone of modern portfolio theory, it has come into widespread use only fairly recently. Given the recent emphasis on risk management there is a proliferation of portfolio optimization techniques. Yet there is very

[^10]little scientific evidence evaluating the performance of alternative risk optimization procedures. This paper provides evidence with respect to forecasting the return covariances and variances that are key inputs to the optimizer. We compare the forecasting performance of different models of covariances. We also assess the out-of-sample performance of optimized portfolios that are based on each forecasting model.

Factor models of security returns were originally proposed as parsimonious ways to predict return covariances and simplify portfolio optimization. They remain at the center stage of portfolio analysis, and have also been extensively used in modelling the behavior of expected returns. Accordingly, the bulk of our analysis focuses on applying such models.

We find that a few factors such as the market, size and book-to-market value of equity capture the general structure of pairwise return covariances. For example, a model based on these three factors generates a correlation of 0.1994 between covariance forecasts and subsequent covariances (measured over a twelve month horizon). Expanding the number of factors does not necessarily improve our ability to predict covariances. Instead, the higher-dimensional models tend to overfit the data. For example, the full covariance model (which essentially assumes that there are as many factors as stocks) generates a correlation of 0.1792 between forecasted and realized covariances. However there is substantial imprecision in the forecasts, so that the factor models yield mean absolute forecast errors that are not notably different from a simple model which assumes that all stocks share the same average pairwise covariance. Relaxing the linearity assumption underlying the factor models and using more updated estimates of stocks' factor loadings does not improve forecast power.

The true test of the models' ability to predict covariances is in the context of optimized portfolios. We conduct two types of experiments. First, in the spirit of the work of Markowitz we generate the global minimum variance portfolio corresponding to each model. In practice, however, investment managers who implement portfolio optimization techniques are evaluated relative to benchmarks. Accordingly, in the second set of experiments we evaluate the different forecasting models in terms of minimizing tracking error volatility relative to several different benchmarks (the standard deviation of the difference between the returns on the portfolio and the benchmark). We highlight the global minimum variance or global minimum tracking error volatility portfolios, as any other point on the efficient frontier dilutes the importance of the second moments and concentrates
more on expected returns.
The good news is some form of portfolio optimization helps for risk control. The various global minimum variance portfolios have future annualized standard deviations in the range of 12.59 to 12.94 percent. This is to be contrasted to a passively diversified portfolio which invests equal amounts in each stock. Such a procedure would give rise to a much higher standard deviation (16.62 percent per year). As the results on forecasting covariances suggest, however, there is very little discrimination between the models under a minimum variance criterion. A one factor model is as good as a nine factor model. All the models exploit the idea that the biggest benefits arise from reducing exposure to the market. The historical betas of the portfolios average about 0.6. compared to 1.1 if stocks were equally-weighted. The objective of keeping the beta low explains why utility stocks are so heavily favored in the global minimum variance portfolios. In essence, the optimizer grabs every single utility.

From the standpoint of distinguishing between the different risk models, the tracking error volatility criterion provides an important test case. In particular, the tracking error (return in excess of the benchmark) tends to diminish the influence of the market factor. Since the market is by far the most important source of return variability, we improve our chances of being able to sort out the relative importance of any remaining factors. Indeed, the different models stand apart more when it comes to minimizing the tracking error volatility (as long as the benchmark's risk exposures are not too unrepresentative of the exposures of the underlying set of stocks). As an example of a naive approach, an equally-weighted portfolio has a tracking error volatility of 6.16 percent per year. A one-factor model for forecasting tracking error covariances generates a tracking error volatility of 5.12 percent per year, while a nine-factor model pushes this down to 4.01 percent per year. The sizable reduction in tracking error volatility from the naive equal-weighting approach (6.16 percent) to a nine-factor model (4.01 percent) sharply illustrates the importance of optimization for investment management practice.

When the objective is to minimize tracking error volatility, we find that a simple heuristic procedure does better than the standard optimization approach. The standard approach is handicapped by the noisiness in forecasting covariances as well as the complex structure of the optimization. Instead, the alternative procedure chooses a portfolio which matches the benchmark along attributes such as size or book-to-market ratio. In general, the choice of benchmark and the set of available
stocks determine the number of attributes necessary for matching. When we use the S\&P 500 index as the benchmark, for example, the results suggest that two attributes, size and book-to-market, suffice (the tracking error volatility drops to 3.25 percent). In cases where a value or growth stock index is the benchmark, a larger number of attributes is needed to produce superior results.

In a realistic setting, such operational issues (the choice of forecasting model for covariances, the. use of attributes or loadings) matter more in practice when the objective is to minimize portfolio tracking error volatility, rather than minimizing portfolio variance. Nonetheless, the imprecision with which return covariances are forecast does not detract from the main message that portfolio optimization helps substantially in risk reduction. At the same time, the low correlation between past and future covariances suggests that a dose of humility may not be the least important part of any risk optimization procedure.

Appendix A

Measuring the factors

In the factor models pairwise return covariances depend on the stocks' loadings on risk factors. Such loadings are estimated from regressions of individual stocks' returns on the returns to proxies for the factors. The market factor is measured as the return on the CRSP value-weighted market index. For the other factors, the proxies are measured as portfolios that mimic the behavior of the factors. This appendix provides further details on the measurement of the mimicking portfolio returns.

The portfolios are formed from all domestic companies listed on the New York and American stock exchanges (excluding closed-end funds, investment trusts and units). We construct portfolios whose returns mimic the factors in the following predictive fashion, inspired by the work of Fama and French (1993). At each portfolio formation date, we sort all eligible stocks by a particular attribute, and assign each stock to a portfolio on the basis of its rank. ${ }^{16}$ The attribute may be an accounting characteristic (such as the ratio of book value to market value of equity), market capitalization, past return or the estimated loading on a macroeconomic variate (such as the maturity premium).

For the accounting-based attributes, we form portfolios at the end of April each year, and assume that there is a four month delay between the end of a firm's fiscal year and the public release of accounting information. We form five portfolios, so the stocks with the lowest and highest values of the attribute are assigned to portfolios 1 and 5 , respectively. The quintile breakpoints are always obtained from the distribution of attributes for NYSE issues only. In each of the subsequent twelve months, we compute the return on each quintile portfolio, where stocks are equally weighted in a portfolio. The mimicking portfolio return for the factor is then calculated each month as the difference between the return on the highest-ranked and the lowest-ranked portfolio.

The accounting-based attributes used for sorting stocks to portfolios include the ratio of book value of common equity (COMPUSTAT Annual data item number 60) to market value of common equity (price per share times number of outstanding shares); the ratio of common dividends (COMPUSTAT Annual data item number 21) to market value of common equity; the ratio of cash

[^11]flow (income before extraordinary items and adjusted for common stock equivalents, COMPCSTAT Annual data item number 20, plus depreciation and amortization, COMPUSTAT Annual data item number 14) to market value of common equity. Market value of common equity (size) is also another sorting variable.

Factors based on past return include a momentum factor and a long-term technical factor. For the momentum factor, stocks are sorted by their past rates of return beginning seven months before and ending one month before the portfolio formation date. Since the predictive power of past returns varies with the forecast horizon, we reform the portfolios every six months beginning in April of each year. For the long-term technical factor, the sorting variable is a stock's rate of return beginning five years before and ending one year before the portfolio formation date.

To mimic macroeconomic factors we also estimate each stock's loading on the term premium (the difference between the monthly return on long-term governinent bonds and the one-month Treasury bill return), or on the default premium (the difference between the monthly return on a high-yield bond index and the return on long-term government bonds). The loadings are estimated from univariate regressions using the past sixty months of returns. Stocks are then ranked on this estimated loading and quintile portfolios formed on the basis of this ranking.

As a companion measure to the market factor, we also construct a mimicking portfolio for the beta factor. Stocks are ranked on their estimated betas with respect to the equally-weighted CRSP index (using the most recent past sixty months of returns) and quintile portfolios formed form this ranking. Further details on all the mimicking portfolios are contained in Chan, Karceski and Lakonishok (1998).

Appendix B

Further analysis of factor models

This appendix investigates two potential drawbacks to using factor models to forecast covariances: the timeliness with which loadings are estimated, and the functional form implied by the linear factor model.

B.1. A portfolio approach to estimating risk exposures

One possibility is that our estimates of a stock's exposures to the factors are not sufficiently timely. Since the exposures are obtained from regressions over the prior sixty months of data, they may not be very informative of a stock's current risk. Take, for example, a firm that was originally large but which performed poorly and currently has a low market capitalization. This stock's loading on the mimicking portfolio for the size factor, estimated over the past sixty months of returns, may not give an accurate measure of its current risk exposure. In order to circumvent this problem, we assign loadings to an individual stock based on its currently observable attributes, so as to get the most up-to-date estimates of its risk exposures.

To illustrate this idea we use the three-factor model (the market, size and book-to-market), since it is widely used in the empirical research literature. At the end of April every year, every domestic common issue listed on the NYSE and Amex is assigned to a portfolio using a withingroup three-way sorting procedure. Specifically, stocks are ranked by estimated market beta (based on a regression using the prior sixty monthly returns) and grouped into three portfolios. Within each of these beta-ranked portfolios, we rank and group stocks into three portfolios by market value of equity. Finally we subdivide each beta-size portfolio into three more groups on the basis of the book-to-market equity ratio, yielding a total of twenty-seven portfolios. The breakpoints for each sort are taken from NYSE issues only. In each sort, the first portfolio comprises stocks ranked in the top three deciles, the second portfolio comprises stocks ranked in the intermediate four deciles and the third portfolio contains stocks falling in the bottom three deciles. Equally-weighted returns on each portfolio are calculated over each of the next twelve months, at the end of which time the portfolios are reformed. In this way we build up a time series of returns on each portfolio.

Since each portfolio's composition is updated annually using the most timely data, the risk
profile for a portfolio should be relatively more stationary than is the case for an individual stock. Accordingly, we estimate the loadings every year for each portfolio from a multiple regression using the most recent past sixty months of returns. Then we assign the portfolio's factor loadings to every component stock currently in that portfolio as estimates of the stock's exposures.

This amendment to the three-factor model does not materially affect forecast performance. The portfolio approach to estimating three-factor model sensitivities gives an average absolute error of 0.0023 , relative to covariances measured over the subsequent thirty-six months. The correlation between forecasts and realizations is 37.50 percent. Recall from Table 3 that the standard approach generates 0.0023 and 41.76 percent for the average absolute error and correlation, respectively. Getting more up-to-date measurements of a stock's attributes does not give sharper estimates of its exposures, possibly because the signal-to-noise ratio for the factor model at the level of individual stocks is low to begin with. ${ }^{17}$

B.2. The relation between factors and covariances

Under the standard linear factor model, the return covariance between two stocks is the sum of terms that are proportional to the products of the stocks' factor loadings. In one respect, however, this formulation does not fully correspond to the following basic intuition about the structure of return covariances. It is natural to expect that stocks that are similar with respect to attributes such as firm size and book-to-market value should also exhibit strong return covariation. Pairs of dissimilar stocks (a large stock and a small stock, for example, or stocks belonging to different industries) should covary to a lesser extent. These statements do not depend on the magnitude of the stocks' factor loadings, so there is nothing in the standard implementation of the linear factor model that captures these simple observations. Accordingly, in what follows we relax the factor models discussed in the text so that while covariances can still depend on the loadings, they are not restricted to vary with the products of the loadings. We check whether this modification helps

[^12]to improve the forecast power of the factor models.
We adapt the factor models in several different ways. In each modification, the sequence is the same. Attributes of a stock are measured over one period and these are related to return covariances measured over a disjoint subsequent period (to maintain the predictive flavor of our tests). The estimated model is then used to generate forecasts, using the most recently observed attributes of the stock. Consider, for instance, the first set of forecasts made at the end of April of 1968 (time t). The forecasting model is formulated using the most recent past eight years of data (in this example extending back to April 1960). For each pair of stocks i and j, firm attributes, denoted $X_{i j, t-1}$, are measured over the earliest five years (in the example these are measured over the period 1960 to 1965). These are related to covariances $c_{i j, t}$ measured over the three years (e.g., from 1965 to 1968) immediately prior to the forecast date using the model
\[

$$
\begin{equation*}
c_{i j, t}=X_{i j, t-1} \phi+\epsilon_{i j, t} . \tag{10}
\end{equation*}
$$

\]

We then step forward to the forecast date and update the firm attributes, $X_{i j, t}$ using the most recent past five years (e.g. from 1963 to 1968). Forecasts are generated as $X_{i j, t} \hat{\phi}$ where $\hat{\phi}$ is the least squares estimate from equation (10). ${ }^{18}$

Details regarding the choice of attributes $X_{i j}$ are as follows. Briefly, the models fall into four general categories. One category (model 2 in Table B1) relates realized covariances to measures of the similarity between stocks. The second category of models (models 3 through 5) relaxes the assumption, imposed by the factor model, that covariances are proportional to the product of loadings. The third category (model 1 and models 6 to 8) directly relate covariances to firm characteristics, including past covariance, past return volatility and industry affiliation. Finally, we explore combinations of forecasts from different models.

In the first model, Model 1, the attribute set $X_{i j}$ comprises only the historical covariance between the returns of stocks i and j. This model thus corrects for the tendency for future covariances

[^13]to revert to the mean. ${ }^{19}$ In the second model, Model 2 , we follow up on the intuition that the return covariance between a pair of stocks should be related to measures of the similarity between the two. The three measures of similarity we use are: the absolute difference between the stocks' decile rankings (scaled to lie between zero and one) with respect to market beta (relative to the CRSP value-weighted index), market capitalization, and book-to-market value of equity. Model 3 allows. the return covariance to vary with the levels of firms' attributes and also on whether the two stocks have roughly the same levels of attributes. Note that we do not require the covariances to be proportional to the product of loadings. In particular, in this model a stock is ranked by either beta, size or book-to-market and assigned to one of three categories for each variable: the highest twenty percent (high), the intermediate sixty percent (medium) and the lowest twenty percent (low). This yields for each attribute six distinct possible combinations of categories for any pair of stocks. As a measure of similarity, we define a dummy variable for each of the six combinations of categories: such that the dummy variable takes the value of one if both stocks fall into the particular category and zero otherwise. Model 4 uses the same three attributes (beta, firm size and book-to-market ratio) but expands the number of classifications for each attribute to quintiles (so that there are fifteen distinct combinations of categories). Model 5 expands on the preceding model by introducing additional attributes. In addition to beta, firm size and book-to-market equity, model 5 also uses a stock's rate of return beginning seven months and ending one month ago; its return beginning sixty months and ending twelve months ago; dividend yield; loading on the second principal component; loading on the default premium factor; and loading on the term premium factor. ${ }^{20}$

In model 6 , the attribute set $X_{i j}$ includes the product of the historical standard deviations of the returns on the two stocks. Since a covariance is proportional to the product of standard deviations (where the factor of proportionality is the correlation coefficient), this model is motivated by the idea that setting all pairwise correlations to a constant (ϕ in equation (10)) is not a bad approximation. Some support for this view can be found in Table 4, where the average correlation model has the lowest mean absolute error. In addition, to the extent that return volatilities are relatively more stable, this model may give better forecasts of covariances. The remaining two models exploit the

[^14]information given by industry affiliation (as in Table 2) to forecast covariances. In model 7 each stock is assigned to an industry (the industry classification is given in Fama and French (1997)). Equally-weighted portfolio returns are constructed for each industry, and all pairwise covariances between returns of the industry portfolios are calculated. ${ }^{21}$ The forecasted covariance between a pair of stocks is the covariance between their respective industries. Model 8 replicates the exercise, but breaks down each industry into large and small firms (relative to the median NYSE firm). In so doing the model allows, say, a large financial stock to have a different covariance with a pharmaceutical stock compared to a small financial stock and the same pharmaceutical stock.

Finally, model 9 aggregates the forecasts from four of the previous models (model 1, model 4, model 5 and model 8). It does this by taking a simple average of the forecasted covariances from each of the four models. ${ }^{22}$

Table B1 presents the results. When we evaluate the models' forecast performance, we report results relative to covariances measured over the subsequent thirty-six months only, for the sake of brevity. In general, the models in Table B1 do not yield lower mean absolute errors, compared to the factor models in Table 3. Not surprisingly, one exception is the historical covariance model after incorporating mean-reversion (model 1).

Indeed, Table B1 echoes our earlier findings in that the simple models do as well as the models using numerous attributes and multiple classifications. Most strikingly, the best-performing individual model is model (6), which is based on the product of standard deviations. This model yields a mean absolute error of 0.0022 . Possibly, the more complicated models snoop the data too much, so that on an out-of-sample basis they do a poor job in forecasting.

To the extent that the different models give readings of future covariances that are less than perfectly correlated, combining them may give rise to better forecasting performance. The last row in panel B confirms this idea. The combined model has an mean absolute error of 0.0022 , and its forecasts have a correlation of 45.08 percent with the realized values. Compared to the correlation based only on the regression-adjusted historical covariance, the additional information from the

[^15]other models raises the correlation by a fairly large margin (roughly seventeen percent on a relative basis).

Appendix C

Variance forecasting models

Model 1 forecasts future variances from past variances (after adjusting for realized variances' tendency to regress to the mean). Model 2 predicts a stock's variance from its loading on three factors: the market, the size factor and the book-to-market factor. The loadings are estimated for each stock from a multiple regression using the past sixty months of returns. Note that while the model lets variances depend on the levels of the loadings, variances are not restricted to be proportional to the squared loadings. Model 3 uses indicator variables based on the same set of estimated loadings on the three factors. Corresponding to each loading we define two dummy variables. If the loading is high (above the 80 -th percentile of the distribution of loading estimates of NYSE firms), the first duminy variable takes the value of one and the second dummy variable takes the value of zero; if the loading is low (below the 20 -th percentile of loading estimates of NYSE firms), the first dummy variable equals zero and the second dummy variable is set to one. In total, then, six dummy variables are defined. Model 4 uses the values of three stock characteristics: market beta, size and dividend yield to predict future variances. Model 5 uses dummy variables based on four attributes (market beta, size, book-to-market and dividend yield). The dummy variables are defined as in Model 3, yielding eight variables. Both models 4 and 5 also include an additional dummy variable to handle the case of zero dividend yield (the dummy variable equals one if the dividend yield is zero, and is zero otherwise). Finally, model 6 is a composite forecasting model which gives equal weights to the forecasts from models 1,3 and $5 .{ }^{23}$

Table C1 reports the results for a subset of our variance forecasting models. The model based on regression-adjusted historical variance (model 1) is associated with the largest dispersion in forecast values. The range of forecasts from this model is 0.0402 , and the standard deviation of forecasts is 0.50 percent. Nonetheless, its forecasting performance is as good as the other, more elaborate models in the table. Of all the individual forecasting models, the regression-adjusted historical variance model produces the lowest average absolute error (0.0062) as well as the highest correlation between forecasts and realizations (52.25 percent). Again, the poor out-of-sample performance of

[^16]the higher-dimensional models may be attributable to data-snooping. Combining the information in the loadings and attributes along with the information in historical variance to yield a composite forecast (model 6) raises the correlation to 54.47 percent, representing only a four percent relative improvement.

Appendix D

Attribute-matching approach

An alternative procedure for minimizing tracking error volatility is to match the benchmark portfolio along a number of attributes. Table 6 uses several ways to implement this procedure. In . every case we use a sample of 250 stocks for portfolio optimization.

Two models, the industry model and the industry, size model are heuristics for matching the industry composition and the industry-size composition of the benchmark. In the industry model, there are nine industry sectors. Each sector's percentage contribution to the total market capitalization of the benchmark is calculated. The fraction is then equally allocated across the stocks belonging to that sector and that are available for portfolio formation, up to a maximum allocation of two percent. The weight for a stock is then its allocation, scaled so that the weights sum to one across all the candidate stocks. In the industry, size model each of the nine sectors is divided into two sets containing stocks that are above (below) the median market capitalization of NYSE firms in the sector. Within each sector-size classification the portfolio formation procedure is as for the industry model.

For the other models in Table 6 the general procedure is as follows. In each case we choose the portfolio weights x_{j} for stock $j=1, \ldots, N$ to minimize the portfolio's residual variance and the sum of squared deviations between the portfolio's attributes and the benchmark's attributes:

$$
\begin{equation*}
\sum_{j=1}^{N} x_{j}^{2} \omega_{j}^{2}+\sum_{i=1}^{K}\left(\sum_{j=1}^{N} x_{j} Z_{i j}-Z_{i B}\right)^{2} \tag{11}
\end{equation*}
$$

where ω_{j}^{2} is the residual variance for stock j and $Z_{i j}$ is its i-th attribute and $Z_{i B}$ is the corresponding attribute for the benchmark. The portfolio weights are constrained to be non-negative and not larger than two percent. The attributes (measured as of the portfolio formation date) are ordered and expressed as percentile ranks (between zero and one). ${ }^{24}$

In the size, residual variance model the attribute is firm size (equity market capitalization). The size, book-to-market, residual variance model augments firm size with the ratio of book-to-

[^17]market value of equity. The nine attribute, residual variance model includes firm size, book-tomarket ratio, dividend yield, rate of return beginning seven months and ending one month before portfolio formation, rate of return beginning sixty months and ending twelve months before portfolio formation, and loadings on the default premium factor, on the term premium factor, on the equallyweighted CRSP market index and on the second principal component.

References

Alexander, Gordon J., 1978, A re-evaluation of alternative portfolio selection models applied to common stocks, Journal of Financial and Quantitative Analysis 13, 71-78.

BARRA, 1990, The United States Equity Model: Handbook (BARRA, Berkeley).
Bawa, Vijay S., and Stephen J. Brown, 1979, Capital market equilibrium: Does estimation risk really matter?, in Vijay S. Bawa, Stephen J. Brown and Roger W. Klein, eds.: Estimation Risk and Optimal Portfolio Choice (North-Holland Publishing Co., Amsterdam).

Best, Michael J., and Robert R. Grauer, 1991, On the sensitivity of mean-variance-efficient portfolios to changes in asset means: Some analytical and computational results, Review of Financial Studies 4, 315-342.

Chan, Louis K. C., and Josef Lakonishok, 1993, Are the reports of beta's death premature?, Journal of Portfolio Management 19, 51-62.

Chan, Louis K. C., Jason Karceski, and Josef Lakonishok, 1998, The risk and return from factors, Journal of Financial and Quantitative Analysis 33, 159-188.

Chopra, Vijay K., and William T. Ziemba, 1993, The effect of errors in means, variances and covariances on optimal portfolio choice, Journal of Portfolio Management 19, 6-11.

Cohen, Kalman J., and Jerry A. Pogue, 1967, An empirical evaluation of alternative portfolio selection models, Journal of Business 40, 166-193.

Connor, Gregory, and Robert A. Korajczyk, 1988, Risk and return in an equilibrium APT: Application of a new test methodology, Journal of Financial Economics 21, 255-289.

Connor, Gregory, and Robert A. Korajczyk, 1993, A test for the number of factors in an approximate factor model, Journal of Finance 48, 1263-1291.

Daniel, Kent, and Sheridan Titman, 1997, Evidence on the characteristics of cross sectional variation in stock returns, Journal of Finance 52, 1-33.

Elton, Edwin J., and Martin J. Gruber, 1973, Estimating the dependence structure of share prices - Implications for portfolio selection, Journal of Finance 28, 1203-1232.

Elton, Edwin J., Martin J. Gruber, and Thomas Urich, 1978, Are betas best?, Journal of Finance 23, 1375-1384.

Fama, Eugene F., and Kenneth R. French, 1993, Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3-56.

Fama, Eugene F., and Kenneth R. French, 1997, Industry costs of equity, Journal of Financial Economics 43, 153-193.

Frost, Peter A., and James E. Savarino, 1986, An empirical Bayes approach to efficient portfolio selection, Journal of Financial and Quantitative Analysis 21, 293-305.

Green, Richard J., and Burton Hollifield, 1992, When will mean-variance efficient portfolios be well diversified?, Journal of Finance 47, 1785-1809.

Huber, Peter J., 1977, Robust covariances, in S. S. Gupta and Dennis S. Moore, eds.: Statistical decision theory and related topics II (Academic Press, New York, NY).

Jagannathan, Ravi, and Zhenyu Wang, 1992, The cross-section of expected stock returns: Do size and book to market equity measure systematic risk better than beta?, working paper, University of Minnesota.

Jobson, J. D., and Bob Korkie, 1981, Putting Markowitz theory to work, Journal of Portfolio Management 7, 70-74.

Lakonishok, Josef, Andrei Shleifer, and Robert W. Vishny, 1992, The structure and performance of the money management industry, Brookings Papers: Microeconomics, 339-391.

Ledoit, Olivier, 1997, Improved estimation of the covariance matrix of stock returns with an application to portfolio selection, working paper, University of California Los Angeles.

Markowitz, Harry M., 1952, Portfolio selection, Journal of Finance 7, 77-91.
Markowitz, Harry M., 1959, Portfolio selection: Efficient diversification of investments (Yale University Press, New Haven, CT.).

Merton, Robert C., 1980, On estimating the expected return on the market: An exploratory investigation, Journal of Financial Economics 8, 323-361.

Michaud, Richard O., 1989, The Markowitz optimization enigma: Is 'optimized' optimal?, Financial Analysts Journal 45, 31-42.

Nelson, Daniel B., 1992, Filtering and forecasting with misspecified ARCH models I: Getting the right variance with the wrong model, Journal of Econometrics 52, 61-90.

Pagan, Adrian, and G. William Schwert, 1990, Alternative models for conditional stock volatility, Journal of Econometrics 45, 267-290.

Roll, Richard, 1992, A mean-variance analysis of tracking error, Journal of Portfolio Management ${ }^{-}$ 18, 13-22.

Schwert, G. William, and Paul J. Seguin, 1990, Heteroskedasticity in stock returns, Journal of Finance 45, 1129-1155.

Winston, Kenneth, 1993, The "efficient index" and prediction of portfolio variance, Journal of Portfolio Management 19, 27-34.

Table 1
Distributions of variances, covariances and correlations of returns on sample stocks

At the end of April of each year from 1968 to 1998 three samples of stocks are selected from eligible domestic common stock issues on the NYSE and Amex. For each set of stocks, sample variances, pairwise covariances. and correlations are calculated based on monthly returns over the prior sixty months. Summary statistics are based on the estimated values pooled over all years. In panel A, five hundred stocks are randomly selected each year. In panel B, the sample of stocks includes NYSE and Amex domestic primary firms with equity market capitalization above the 80 th percentile of the size distribution of NYSE firms. In panel C, the sample of stocks includes NYSE and Amex domestic primary firms with equity market capitalization below the 20th percentile of the size distribution of NYSE firms.

	Variances	Covariances	Correlations
	(A)	500 random stocks	
Mean	0.0098	0.0026	0.2801
Standard deviation	0.0063	0.0019	0.1477
Minimum	0.0013	-0.0062	-0.3767
25-th percentile	0.0054	0.0013	0.1818
Median	0.0083	0.0023	0.2845
75-th percentile	0.0126	0.0036	0.3824
Maximum	0.0474	0.0214	0.9196
(B) Large stocks			
Mean	0.0067	0.0021	0.3300
Standard deviation	0.0041	0.0013	0.1529
Minimum	0.0014	-0.0031	-0.3137
25-th percentile	0.0042	0.0012	0.2298
Median	0.0058	0.0019	0.3353
75-th percentile	0.0080	0.0028	0.4350
Maximum	0.0336	0.0144	0.8864
	(C)Small	stocks	
Mean	0.0181	0.0042	0.2438
Standard deviation	0.0140	0.0032	0.1381
Minimum	0.0011	-0.0128	-0.3767
25-th percentile	0.0096	0.0021	0.1508
Median	0.0149	0.0037	0.2467
75-th percentile	0.0225	0.0057	0.3397
Maximum	0.1241	0.0463	0.9175

Average correlations of individual stock returus for selected industries

At the end of April of each year from 1968 to 1998 cligible domestic common stock issues on NYSE and Amex are classified into one of 48 industry groups, based on the definitions of Fama and French (1997). Pairwise correlations of monthly returns between stocks in each industry are estimated from the most recent 60 months of data and then averaged across all stocks in the same industry. The average pairwise correlation between stocks in the same industry and all other stocks is also calculated. The means over all years of these average correlations are reported in this table for the cleven largest industries (in terms of equity market capitalization and the number of constituent stocks). In panels B and C , firms within these selected industries are further classified into two groups: small companies in an industry are firms with equity market capitalization below the median size of NYSE firms in the same industry, and large companies in an industry are firms with equity market capitalization above the median for NYSE firms in that industry. Pairwise correlations are averaged within small firms in the same industry, within large firms in the same industry, between large and small firms in the same industry and between small or large firms in an industry and same-sized firms in all other industries. Means across all years are reported in panel B for large firms and in panel Cor small firms. The average number of firms in each industry is reported in parentheses.

(A) All stocks

Industry	Average correlation within industry	Average correlation with firms in all other industries	Difference
Chemicals (48)	0.3579	0.3019	0.0560
Construction Materials (69)	0.3427	0.2970	0.0457
Machinery (86)	0.3338	0.2895	0.0443
Petroleum \& Natural Gas (71)	0.3646	0.2283	0.1363
Utilities (133)	0.3870	0.2186	0.1684
Business services (41)	0.2913	0.2799	0.0114
Electronic equipment (54)	0.3695	0.2931	0.0764
Wholesale (58)	0.2954	0.2799	0.0155
Retail (100)	0.3260	0.2773	0.0487
Banking (61)	0.4108	0.2925	0.1183
Insurance (23)	0.3921	0.2975	0.0946

(B) Large stocks				
Industry	Average correlation with other large firms within industry	Average correlation with large firms in all other industries	Difference	Average correlation with small firms within industry
Chemicals (21)	0.4194	0.3392	0.0802	0.3395
Construction Materials (25)	0.3920	0.3323	0.0597	0.3337
Machinery (33)	0.3917	0.3242	0.0675	0.3227
Petroleum \& Natural Gas (28)	0.4228	0.2428	0.1800	0.3362
Utilities (68)	0.4570	0.2417	0.2153	0.3697
Business services (15)	0.3380	0.3142	0.0238	0.2801
Electronic equipment (18)	0.4222	0.3225	0.0997	0.3509
Wholesale (19)	0.3235	0.3086	0.0149	0.2900
Retail (40)	0.3925	0.3116	0.0809	0.3045
Banking (29)	0.4915	0.3269	0.1646	0.3705
Insurance (12)	0.4388	0.3290	0.1098	0.3616

(C) Small stocks

Industry	Average correlation with other small firms within industry	Average correlation with small firms in all other industries	Average correlation with large firms within industry	
Chemicals (26)	0.3206	0.2764	0.0442	0.3395
Construction Materials (44)	0.3178	0.2753	0.0425	0.3337
Machinery (53)	0.3052	0.2706	0.0346	0.3227
Petroleum \& Natural Gas (43)	0.3246	0.2209	0.1037	0.3362
Utilities (65)	0.3394	0.2029	0.1365	0.3697
Business services (26)	0.2588	0.2560	0.0028	0.2801
Electronic equipinent (36)	0.3397	0.2746	0.0651	0.3509
Wholesale (39)	0.2741	0.2586	0.0155	0.2900
Retail (60)	0.2741	0.2512	0.0229	0.3045
Banking (33)	0.3366	0.2630	0.0736	0.3705
Insurance (11)	0.3337	0.2771	0.0566	0.3616

Table 3
Performance of covariance forecasting models
At the end of April of each year from 1973 onwards a random sample of 250 firms is drawn from eligible domestic common stock issues on NYSE and Amex. Forecasts of monthly return covariances are generated from seven models, based on the prior sixty months of data for each stock. Summary statistics for the distribution of forecasted values are reported in panel A. Forecasts are then compared against the realized sample covariances estimated over the subsequent twelve months (panel B) and over the subsequent thirty-six months (panel C). The last estimation period ends in 1997 in panel B, and ends in 1995 in panel C. Summary statistics are provided for the distribution of the absolute difference between realized and forecasted values of pairwise covariances. Also reported is the Pearson correlation between forecasts and realizations, and the slope coefficient in the regression of realizations on forecasts.
(A) Properties of forecasted covariances

Model	Standard deviation			Minimum	5 -th percentile	95 -th percentile
Mean	Maximum					
Full covariance	0.0027	0.0018	-0.0051	0.0003	0.0061	0.0211
1-factor	0.0025	0.0014	-0.0001	0.0007	0.0051	0.0130
3-factor	0.0026	0.0015	-0.0017	0.0006	0.0055	0.0150
4-factor	0.0026	0.0016	-0.0018	0.0006	0.0055	0.0151
8-factor	0.0026	0.0016	-0.0028	0.0006	0.0056	0.0159
10-factor	0.0026	0.0016	-0.0032	0.0005	0.0057	0.0162
Average covariance	0.0027	0.0	0.0027	0.0027	0.0027	0.0027

(B) Forecast performance based on subsequent 12 months

	Absolute forecast error					
Model	Mean	Median	percentile	Maximum	Correlation	Slope
Full covariance	0.0040	0.0028	0.0115	0.1631	0.1792	0.3589
1-factor	0.0037	0.0026	0.0107	0.1409	0.1643	0.5435
3-factor	0.0038	0.0027	0.0110	0.1461	0.1994	0.4868
4-factor	0.0038	0.0027	0.0110	0.1462	0.1987	0.4808
8-factor	0.0038	0.0027	0.0111	0.1518	0.1963	0.4573
10-factor	0.0038	0.0027	0.0112	0.1535	0.1962	0.4488
Average covariance	0.0039	0.0030	0.0105	0.1403	0.0000	0.0000

(C) Forecast performance based on subsequent 36 months

	Absolute forecast error					
Model	Mean	Median	percentile	Maximum	Correlation	Slope
Mull covariance	0.0019	0.0016	0.0051	0.0224	0.3394	0.3658
1-factor	0.0018	0.0014	0.0046	0.0215	0.3416	0.4863
3-factor	0.0018	0.0015	0.0047	0.0214	0.3590	0.4599
4-factor	0.0018	0.0015	0.0047	0.0214	0.3583	0.4566
8-factor	0.0018	0.0015	0.0048	0.0211	0.3593	0.4405
10-factor	0.0019	0.0015	0.0048	0.0211	0.3599	0.4340
Average covariance	0.0019	0.0017	0.0042	0.0217	0.0000	0.0000

The full covariance model uses the return covariance estimated over the most recent past sixty months prior to portfolio formation as the forecast. Covariance forecasts from the factor models are based on equation 3 in the text. The 1 -factor model uses the excess return on the value-weighted CRSP index over the monthly

T-bill rate as the factor. The 3 -factor model includes the excess return on the value-weighted index as well as size and book-to-market factors. The 4 -factor model includes these three as well as a momentum factor (based on the rate of return beginning seven months and ending one month before portfolio formation). The 8 -factor model uses as factors the market, size, book-to-market, momentum, dividend yield, cash flow yield, the term premium and the default premium. The 10 -factor model includes these as well as the mimicking portfolio for the beta factor and a long-term technical factor (based on the rate of return beginning sixty. months and ending twelve months before portfolio formation). In the average covariance model the forecast is the average across all pairwise covariances of stocks in the sample.

Table 4
Performance and characteristics of minirrum variance portfolios based on forecasting models

At the end of April of each year from 1973 through 1997 a random sample of 250 firms is drawn from eligible NYSE and Amex domestic common stock issues. Forecasts of covariances and variances of monthly excess returns (over the monthly Tbill rate) are generated from different models, using the prior sixty months of data for each stock. Based on each model's forecasts of variances and covariances, a quadratic programming procedure is used to find the global minimum variance portfolio. The portfolio weights are constrained to be non-negative and not larger than two percent. These weights are then applied to form buy-and-hold portfolio returns until the next April, when the forecasting and optimization steps are repeated and the portfolios are reformed. For each procedure summary statistics are presented in panel A for the annualized mean return and annualized standard deviation for the returns realized on the portfolio; the annualized average Sharpe ratio (the mean return in excess of the Treasury bill rate, divided by the standard deviation); the correlation between the monthly portfolio return and the return on the $S \& P 500$ index; the annualized tracking error (standard deviation of the portfolio return in excess of the $\mathrm{S} \& \mathrm{P} 500$ return) ; and the average number of stocks each year with portfolio weights above half a percent. Panel B reports average characteristics of stocks in each portfolio: the beta relative to the value-weighted CRSP index (based on the sixty months of data prior to portfolio formation); market value of equity (in natural logarithms) book-to-market equity ratio (denoted BM); and dividend yield (denoted DP). Each characteristic is also measured as a decile ranking (from 1 , the lowest, to 10 , the highest). Also reported is the average proportion of the portfolio invested in firms with 2-digit SIC codes of 35-36 (Industrial, Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and in firms with 2-digit SIC code of 49 (Electric, Gas and Sanitary Services). Each characteristic is measured as of the portfolio formation date, and averaged across all portfolio formation years.

Panel A: Performance of portfolios

Model	Mean	Standard deviation	Sharpe ratio	Tracking error	Correlation with market	Average number of stocks with weights above 0.5\%
(1) Full covariance	0.1554	0.1294	0.6405	0.0739	0.8764	53
(2) 1 factor	0.1610	0.1280	0.6907	0.0926	0.7972	54
(3) 3 factor	0.1569	0.1266	0.6659	0.0877	0.8197	54
(4) 9 factor	0.1529	0.1292	0.6224	0.0772	0.8638	54
(5) Product of standard deviations	0.1571	0.1263	0.6693	0.0879	0.8188	55
(6) Industry, size	0.1612	0.1281	0.6919	0.0852	0.8309	61
(7) Combination	0.1560	0.1259	0.6624	0.0841	0.8358	54
(8) 250 stocks, value-weighted	0.1431	0.1554	0.4539	0.0304	0.9807	45
(9) 250 stocks, equally-weighted	0.1727	0.1662	0.6027	0.0616	0.9287	0

Model	$\begin{gathered} \text { Beta } \\ (\text { Rank }) \end{gathered}$	LogSize (Rank)	$\begin{gathered} \overline{\mathrm{BM}} \\ (\text { Rank }) \end{gathered}$	$\begin{gathered} \text { DP } \\ \text { (Rank) } \end{gathered}$	Percent invested in:	
					SIC 35-36	SIC 49
(1) Full covariance	0.5533	20.46	0.7982	0.0626	3.82	46.66
	(1.76)	(7.48)	(5.84)	(8.04)		
(2) 1 factor	0.5071	20.36	0.8491	0.0643	1.97	57.85
	(1.28)	(7.40)	(6.20)	(8.52)		
(3) 3 factor	0.5141	20.36	0.8234	0.0642	2.41	55.74
	(1.24)	(7.40)	(5.88)	(8.40)		
(4) 9 factor	0.5357	20.38	0.8106	0.0625	3.83	47.76
	(1.56)	(7.48)	(5.96)	(8.08)		
(5) Product of standard deviations	0.5948	20.81	0.8118	0.0652	3.20	57.96
	(2.04)	(8.20)	(5.88)	(8.56)		
(6) Industry, size	0.6490	20.37	0.8258	0.0674	0.46	61.09
	(2.28)	(7.32)	(6.12)	(8.52)		
(7) Combination	0.5330	20.40	0.8178	0.0654	2.55	53.82
	(1.40)	(7.40)	(6.04)	(8.36)		
(8) 250 stocks, value-weighted	0.9897	22.34	0.5844	0.0408	13.20	8.66
	(4.60)	(10.0)	(3.88)	(6.32)		
(9) 250 stocks, equally-weighted	1.0686	20.28	0.7593	0.0413	11.02	15.31
	(5.20)	(7.12)	(5.24)	(6.32)		

The full covariance model (model 1) uses the return covariance estimated over the most recent past sixty months prior to portfolio formation as the forecast. Covariance forecasts from the factor models (models 2 to 4) are based on equation 3 in the text. The 1 -factor model uses the return on the value-weighted CRSP index as the factor. The 3 -factor model includes the return on the value-weighted index as well as size and book-to-market factors. The 9 -factor model uses as factors the market, size, book-to-market, momentum, dividend yield, cash flow yield, the term premium, the default premium and the second principal component. Model 5 is based on a regression model that uses the most recent past cight years of data. Return covariances between two stocks are measured over the most recent three years and are regressed on the product of the standard deviations of the stocks' returns measured over the carliest five years. The estimated model is used to generate the covariance forecasts. In model 6, stocks are assigned to an industry-size group. There are forty-eight industries, as in Fama and French (1997). Each industry is divided into a set of large firms (with market value of equity exceeding the median capitalization of NYSE firms in that industry) and a set of small firms (with market value of equity below the NYSE median in that industry). The covariance forecast for any two stocks is given by the average of all pairwise covariances between stocks in their respective industry-size groups, based on the most recent past sixty months. Model 7 uses an equally-weighted average of the forecasts from four models: the full covariance model, the 3 -factor model, the 9 -factor model and the industry-size model. Models 8 and 9 are the value-weighted and equally-weighted portfolios, respectively, of all 250 stocks available at the portfolio formation date.
Table 5
Performance and characteristics of portfolios with minirnum tracking error volatility based on forecasting models At the end of April of each year from 1973 through 1997 a random sample of 250 firms is drawn from eligible NYSE and Amex domestic common stock issues. Forecasts of covariances and variances of monthly returns in excess of the benchmark's return are generated from different models, using the prior sixty months of data for each stock. Based on each model's forecasts of excess return variances and covariances, a quadratic programming procedure is used to find the portfolio with minimum tracking error volatility (standard deviation of portfolio return in excess of the return on the benchmark) where the benchmark portfolio is the Standard \& Poor's 500 index. The portfolio weights are constrained to be non-negative and not larger than two percent. These weights are then applied to form buy-and-hold portfolio returns until the next April, when the forecasting and optimization steps are repeated and the portfolios are reformed. For each procedure summary statistics are presented in panel A for the annualized mean return and annualized standard deviation for the returns realized on the portfolio; the annualized average Sharpe ratio (the mean return in excess of the Treasury bill rate, divided by the standard deviation); the correlation between the monthly portfolio return
 number of stocks each year with portfolio weights above half a percent. Panel B reports average characteristics of stocks in each portfolio: the beta relative to the value-weighted CRSP index (based on the sixty months of data prior to portfolio formation); market value of equity (in

 with 2-digit SIC codes of 35-36 (Industrial, Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and in firms with 2-digit SIC code of 49 (Electric, Gas and Sanitary Services). Each characteristic is measured as of the portfolio formation date, and averaged across all portfolio formation years.
Panel A: Performance of portfolios

Model	Mean	Standard deviation	Sharpe ratio	Tracking error	Correlation with market	Average number of stocks with weights above 0.5%
(1) Full covariance	0.1565	0.1498	0.5607	0.0403	0.9648	63
(2) 1 factor	0.1649	0.1496	0.6175	0.0512	0.9429	67
(3) 3 factor	0.1557	0.1454	0.5719	0.0453	0.9552	77
(4) 9 factor	0.1558	0.1474	0.5648	0.0401	0.9651	76
(5) Product of standard deviations	0.1597	0.1510	0.5773	0.0497	0.9467	87
(6) Industry, size	0.1590	0.1472	0.5878	0.0416	0.9624	68
(7) 250 stocks, value-weighted	0.1431	0.1554	0.4539	0.0304	0.9807	45
(8) 250 stocks, equally-weighted	0.1727	0.1662	0.6027	0.0616	0.9287	0
(9) 1000 stocks, value-weighted	0.1484	0.1520	0.4994	0.0138	0.9959	36

Model	Beta (Rank)	LogSize			BM		DP		Percent invested in:	
		MAD	(Rank)	MAD			(Rank)	MAD	SIC 35-36	SIC 49
(1) Full covariance	0.9802	0.0251	21.28	1.0018	0.6604	0.0603	0.0432	0.0060	10.67	15.81
	(4.52)		(9.00)		(4.48)		(6.60)			
(2) 1 factor	0.9731	0.0277	20.64	1.6468	0.7513	0.1440	0.0466	0.0088	9.67	23.20
	(4.44)		(7.92)		(5.28)		(7.20)			
(3) 3 factor	0.9701	0.0287	20.97	1.3156	0.7093	0.1021	0.0471	0.0080	8.64	26.20
	(4.44)		(8.52)		(4.92)		(7.16)			
(4) 9 factor	0.9734	0.0267	21.10	1.1848	0.6982	0.0909	0.0452	0.0061	9.75	21.65
	(4.44)		(8.84)		(4.84)		(7.04)			
(5) Product of standard deviations	0.9814	0.0328	20.63	1.6500	0.7359	0.1287	0.0466	0.0076	8.74	23.80
	(4.44)		(7.92)		(5.12)		(7.20)			
(6) Industry, size	0.9531	0.0456	21.42	0.8591	0.6546	0.0492	0.0450	0.0070	8.95	15.09
	(4.24)		(9.24)		(4.40)		(6.96)			
(7) 250 stocks, value-weighted	0.9897	0.0394	22.34	0.2279	0.5844	0.0332	0.0408	0.0056	13.20	8.66
	(4.60)		(10.00)		(3.88)		(6.32)			
(8) 250 stocks, equally-weighted	1.0686	0.0970	20.28	2.0020	0.7593	0.1521	0.0413	0.0064	11.02	15.31
	(5.20)		(7.12)		(5.24)		(6.32)			
(9) 1000 stocks, value-weighted	0.9873		22.28		0.6072		0.0419		13.26	8.57
	(4.60)		(10.00)		(4.00)		(6.48)			

The full covariance model (model 1) uses the return covariance estimated over the most recent past sixty months prior to portfolio formation
as the forecast. Covariance forecasts from the factor models (models 2 to 4) are based on equation 3 in the text. The 1 -factor model uses the隹 premium, the default premium and the second principal component. Model 5 uses the most recent past eight years of data. Return covariances between two stocks are measured over the most recent three years and are regressed on the product of standard deviations of the stocks' returns measured over the earliest five years. The regression model is used to generate the covariance forecasts. In model 6 , stocks are assigned to an industry-size group. There are forty-eight industries, as in Fama and French (1997). Each industry is divided into a set of large firms (with market value of equity exceeding the median capitalization of NYSE firms in that industry) and a set of small firms (with market value of equity below the NYSE median in that industry). The covariance forecast for any two stocks is given by the average of all pairwise covariances between stocks in their respective industry-size groups, based on the most recent past sixty months. Models 7 and 8 are the value-weighted and equally-weighted portfolios, respectively, of all the 250 candidate stocks available at each portfolio formation date. Model 9 is the value-weighted portfolio of the largest 1000 stocks at each portfolio formation date.
Table 6
Performance and characteristics of portfolios based on matching the benchmark by attributes
At the end of April of each year from 1973 through 1997 a random sample of 250 firms is drawn from eligible NYSE and Amex domestic common stock issues. Using a quadratic programming procedure, portfolios are formed that minimize the sum of squared deviations between the portfolio's attributes and the benchmark's attributes. The benchmark port folio is the Standard \& Poor's 500 index. The portfolio weights are constrained to be non-negative and not larger than two percent. These weights are then applied to form buy-and-hold portfolio returns until the next April, when the optimization is repeated and the portfolios are reformed. For each procedure summary statistics are presented in panel A for the annualized mean return and annualized standard deviation for the returns realized on the portfolio; the annualized average Sharpe ratio (the mean return in excess of the Treasury bill rate, divided by the standard deviation); the correlation between the monthly portfolio return and the return on the S\&P 500 index; the annualized standard deviation of the portfolio return in excess of the S\&P 500 return; and the average number of stocks each year with portfolio weights above half a percent. Panel B reports average characteristics of stocks in each portfolio: the beta relative to the value-weighted CRSP index (based on the sixty months of data prior to portfolio formation); market value of equity (in natural logarithms); book-to-market equity ratio (denoted BM); and dividend yicld (denoted DP). Each characteristic is also measured as a decile ranking (from 1 , the lowest, to 10 , the highest). The column denoted MAD reports the mean across years of the absolute difference between the optimized portfolio's characteristic and the benchmark's characteristic. Also reported is the average proportion of the portfolio invested in firms with 2 -digit SIC codes of $35-36$ (Industrial, Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and in firms with 2-digit SIC code of 49 (Electric, Gas and Sanitary Services). Each characteristic is measured as of the portfolio formation date, and averaged across all portfolio formation years. Details on implementing the matching procedure used for models 1 to 5 are given in Appendix D. Model 6 is the value-weighted portfolio of the largest 1000 stocks at each portfolio formation date.
Panel A: Performance of portfolios

| Attribute | Standard
 deviation | | | | | Sharpe
 ratio |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | Tracking |
| :---: |
| error | | Correlation |
| :---: |
| with market | | Average number of stocks with |
| :---: |
| weights above 0.5\% |

Panel B: Characteristics of portfolios

Attribute	$\begin{gathered} \text { Beta } \\ \text { (Rank) } \end{gathered}$	LogSize			BM		DP		Percent invested in:	
		MAD	(Rank)	MAD	(Rank)	MAD	(Rank)	MAD	SIC 35-36	SIC 49
(1) Industry	1.0938	0.1184	20.55	1.7315	0.7361	0.1289	0.0403	0.0057	13.07	9.37
	(5.44)		(7.92)		(5.08)		(6.24)			
(2) Industry, size	1.0752	0.0961	21.10	1.1782	0.6841	0.0769	0.0406	0.0050	13.67	9.78
	(5.36)		(8.80)		(4.56)		(6.28)			
(3) Size, residual variance	0.9379	0.0567	21.76	0.5192	0.6482	0.0452	0.0443	0.0059	8.55	20.69
	(4.04)		(9.80)		(4.24)		(6.76)			
(4) Size, book-to-market, residual variance	0.9539	0.0442	21.77	0.5120	0.6007	0.0076	0.0415	0.0038	9.26	17.64
	(4.24)		(9.80)		(3.92)		(6.52)			
(5) 9 attributes, residual variance	0.9828	0.0055	21.78	0.4969	0.6021	0.0075	0.0393	0.0035	10.20	13.53
	(4.48)		(9.88)		(3.92)		(6.24)			
(6) 1000 stocks, value-weighted	0.9873		22.28		0.6072		0.0419		13.26	8.57
	(4.60)		(10.00)		(4.00)		(6.48)			

Table 7
Performance and characteristics of portfolios with minimum tracking error
At the end of April of each year from 1973 through 1997 a random sample of 250 firms is drawn from eligible NYSE and Amex domestic common stock issues. Forecasts of covariances and variances of monthly returns in excess of the benchmark's return are generated from different models, using the prior sixty months of data for each stock. Based on each model's forecasts of excess return variances and covariances, a quadratic programming procedure is used to find the portfolio with minimum tracking error volatility (standard deviation of portfolio return in excess of the return on the benchmark) where the benchmark portfolio is either a value-weighted index of value stocks (part I) or a value-weighted index of growth stocks (part II). The portfolio weights are constrained to be non-negative and not larger than two percent. These weights are then applied to form buy-and-hold portfolio returns until the next April, when the forecasting and optimization steps are repeated and the portfolios are reformed. For each procedure summary statistics are presented in panel A for the annualized mean return and annualized standard deviation for the returns realized on the portfolio; the annualized average Sharpe ratio (the mean return in excess of the Treasury bill rate, divided by the standard deviation); the correlation between the monthly portfolio return and the return on the benchmark; the annualized standard deviation of the portfolio return in excess of the benchmark's return; and the average number of stocks each year with portfolio weights above half a percent. Panel B reports average characteristics of stocks in each portfolio: the beta relative to the value-weighted CRSP index (based on the sixty months of data prior to portfolio formation); market value of equity (in natural logarithms); book-to-market equity ratio (denoted BM); and dividend yield (denoted DP). Each characteristic is also measured as a decile ranking (from 1, the lowest, to 10, the highest). The column denoted MAD reports the mean across years of the absolute difference between the optimized portfolio's characteristic and the benchmark's characteristic. Also reported is the average proportion of the portfolio invested in firms with 2-digit SIC codes of 35-36 (Industrial, Commercial Machinery, Computer Equipment and Electrical Equipment excluding Computers) and in firms with 2-digit SIC code of 49 (Electric, Gas and Sanitary Services). Each characteristic is measured as of the portfolio formation date, and averaged across all portfolio formation years.
Part I: Value stock benchmark Panel A: Performance of portfolios

Model	Standard deviation			Sharpe ratio	Tracking error volatility	Correlation with benchmark
Average number of stocks with weights above 0.5\%						
(1) Full covariance	0.1736	0.1465	0.6900	0.0472	0.9509	62
(2) 250 stocks, value-weighted	0.1431	0.1554	0.4539	0.0624	0.9179	45
(3) 250 stocks, equally-weighted	0.1727	0.1662	0.6027	0.0564	0.9410	0
(4) Matched on size, residual variance	0.1556	0.1491	0.5570	0.0461	0.9533	83
(5) Matched on 9 attributes, residual variance	0.1593	0.1594	0.5446	0.0379	0.9724	54
(6) Value stock benchmar!	0.1790	0.1522	0.7000	0.0000	1.0000	45

Part I (Contd.): Value stock benchmark

Model	$\begin{gathered} \text { Beta } \\ \text { (Rank) } \end{gathered}$		$\begin{aligned} & \hline \text { LogSize } \\ & \text { (Rank) } \\ & \hline \end{aligned}$	MAD	$\begin{gathered} \text { BM } \\ \text { (Rank) } \end{gathered}$	MAD	$\begin{gathered} \text { DP } \\ \text { (Rank) } \end{gathered}$	MAD	Percent invested in:	
		MAD							SIC 35-36	SIC 49
(1) Full covariance	$\begin{aligned} & 0.9295 \\ & (4.00) \end{aligned}$	0.0550	$\begin{aligned} & 20.75 \\ & (8.12) \end{aligned}$	0.7676	$\begin{aligned} & 0.8320 \\ & (6.00) \end{aligned}$	0.2521	$\begin{aligned} & 0.0553 \\ & (7.64) \end{aligned}$	0.0160	8.01	27.58
(2) 250 stocks, value-weighted	$\begin{aligned} & 0.9897 \\ & (4.60) \end{aligned}$	0.0684	$\begin{array}{r} 22.34 \\ (10.00) \end{array}$	0.8447	$\begin{aligned} & 0.5844 \\ & (3.88) \end{aligned}$	0.4996	$\begin{aligned} & 0.0408 \\ & (6.32) \end{aligned}$	0.0234	13.20	8.66
(3) 250 stocks, equally-weighted	$\begin{aligned} & 1.0686 \\ & (5.20) \end{aligned}$	0.1035	$\begin{array}{r} 20.28 \\ (7.12) \end{array}$	1.2309	$\begin{aligned} & 0.7593 \\ & (5.24) \end{aligned}$	0.3248	$\begin{aligned} & 0.0413 \\ & (6.32) \end{aligned}$	0.0212	11.02	15.31
(4) Matched on size, residual variance	$\begin{aligned} & 0.9340 \\ & (4.04) \end{aligned}$	0.0623	$\begin{array}{r} 21.35 \\ (9.08) \end{array}$	0.1666	$\begin{aligned} & 0.6959 \\ & (4.76) \end{aligned}$	0.3881	$\begin{aligned} & 0.0460 \\ & (7.16) \end{aligned}$	0.0156	8.76	23.85
(5) Matched on 9 attributes, residual variance	$\begin{aligned} & 0.9662 \\ & (4.40) \end{aligned}$	0.0116	$\begin{array}{r} 21.12 \\ (8.84) \end{array}$	0.3862	$\begin{aligned} & 1.0859 \\ & (8.00) \end{aligned}$	0.0259	$\begin{gathered} 0.0642 \\ (8.32) \end{gathered}$	0.0126	6.65	29.46
(6) Value stock benchmark	$\begin{aligned} & 0.9745 \\ & (4.40) \end{aligned}$	0.0000	$\begin{array}{r} 21.51 \\ (9.44) \end{array}$	0.0000	$\begin{aligned} & 1.0841 \\ & (7.96) \end{aligned}$	0.0000	$\begin{aligned} & 0.0616 \\ & (8.28) \\ & \hline \end{aligned}$	0.0000	8.81	22.86

Part II: Growth stock benchmark

Model	Standard deviation			Sharpe ratio	Tracking error volatility	Correlation with benchmark
Mean	Average number of stocks with weights above 0.5%					
(1) Full covariance	0.1505	0.1556	0.5013	0.0500	0.9520	60
(2) 250 stocks, value-weighted	0.1431	0.1554	0.4539	0.0452	0.9611	45
(3) 250 stocks, equally-weighted	0.1727	0.1662	0.6027	0.0760	0.8938	0
(4) Matched on size, residual variance	0.1453	0.1519	0.4788	0.0478	0.9565	69
(5) Matched on 9 attributes, residual variance	0.1376	0.1643	0.3961	0.0397	0.9706	52
(6) Growth stock benchmark	0.1427	0.1633	0.4296	0.0000	1.0000	57

Part II (Contd.): Growth stock benchmark Panel B: Characteristics of portfolios										
Model	$\begin{gathered} \text { Beta } \\ (\text { Rank }) \end{gathered}$	MAD	LogSize (Rank)	MAD	$\begin{gathered} \text { BM } \\ (\text { Rank }) \end{gathered}$	MAD	$\begin{gathered} \text { DP } \\ \text { (Rank) } \end{gathered}$	MAD	Percent invested in:	
									SIC 35-36	SIC 49
(1) Full covariance	1.0124	0.0506	21.26	1.1486	0.5919	0.1996	0.0399	0.0085	9.34	13.30
	(4.80)		(9.04)		(3.88)		(6.20)			
(2) 250 stocks, value-weighted	0.9897	0.0546	22.34	0.2905	0.5844	0.1921	0.0408	0.0094	13.20	8.66
	(4.60)		(10.00)		(3.88)		(6.32)			
(3) 250 stocks, equally-weighted	1.0686	0.0865	20.28	2.1305	0.7593	0.3670	0.0413	0.0100	11.02	15.31
	(5.20)		(7.12)		(5.24)		(6.32)			
(4) Matched on size, residual variance	0.9507	0.0800	21.99	0.4242	0.6209	0.2286	0.0424	0.0120	8.73	17.07
	(4.20)		(10.00)		(4.08)		(6.72)			
(5) Matched on 9 attributes, residual variance	1.0036	0.0112	21.81	0.5973	0.4111	0.0188	0.0321	0.0021	11.08	5.31
	(4.60)		(9.84)		(2.20)		(5.04)			
(6) Growth stock benchmark	1.0040	0.0000	22.41	0.0000	0.3923	0.0000	0.0321	0.0000	14.09	4.15
	(4.68)		(10.00)		(2.16)		(4.96)			

[^18]Table B1

Performance of extensions of factor models for forecasting covariances

 common stock issues. Forecasts of monthly return covariances are generated from nine models, based on the prior sixty months of data for each stock. Summary statistics for the distribution of forecasted values are reported in panel A. Forecasts are then compared against the realized sample covariances estimated over the subsequent thirty-six months (panel B). Summary statistics are provided for the distribution of the absolute difference between realized and forecasted values of pairwise covariances. Also reported is the Pearson correlation between forecasts and realizations, and the slope coefficient in the regression of realizations on forecasts. Appendix B gives details on the specification of the models.(A) Properties of forecasted covariances

Model	Mean	Standard deviation	Minimum	$5-\mathrm{th}$ percentile	$\begin{gathered} 95-\mathrm{th} \\ \text { percentile } \end{gathered}$	Maximum
(1) Regression-adjusted historical covariance	0.0035	0.0012	-0.0015	0.0021	0.0057	0.0175
(2) Difference in decile rankings (3 attributes)	0.0035	0.0003	0.0026	0.0030	0.0039	0.0041
(3) Dummy variables, 6 categories (3 attributes)	0.0035	0.0011	0.0014	0.0020	0.0056	0.0069
(4) Dummy variables, 15 categories (3 attributes)	0.0035	0.0012	0.0010	0.0018	0.0057	0.0076
(5) Dummy variables, 15 categories (9 attributes)	0.0035	0.0013	0.0001	0.0016	0.0058	0.0088
(6) Product of historical standard deviations	0.0035	0.0012	0.0015	0.0021	0.0057	0.0152
(7) Industry	0.0038	0.0012	0.0021	0.0021	0.0059	0.0067
(8) Industry and size	0.0036	0.0014	0.0017	0.0017	0.0063	0.0071
(9) Combination	0.0035	0.0015	0.0009	0.0015	0.0064	0.0128

(B) Forecast performance based on subsequent 36 months

(B) Forecast performance based on subsequent 36 months						
Model	Absolute forecast error					
					Correlation	Slope
(1) Regression-adjusted historical covariance	0.0023	0.0019	0.0056	0.0401	0.3866	1.0630
(2) Difference in decile rankings (3 attributes)	0.0024	0.0021	0.0055	0.0402	0.1045	1.0617
(3) Dummy variables, 6 categories (3 attributes)	0.0023	0.0019	0.0056	0.0395	0.3570	0.9331
(4) Dummy variables, 15 categories (3 attributes)	0.0023	0.0019	0.0056	0.0395	0.3718	0.9016
(5) Dummy variables, 15 categories (9attributes)	0.0023	0.0019	0.0056	0.0388	0.3679	0.8040
(6) Product of historical standard deviations	0.0022	0.0018	0.0056	0.0385	0.3990	1.0585
(7) Industry	0.0024	0.0020	0.0057	0.0395	0.3621	0.8317
(8) Industry and size	0.0023	0.0019	0.0058	0.0390	0.3866	0.7654
(9) Combination	0.0022	0.0018	0.0057	0.0383	0.4508	0.8263

Table Cl
Performance of variance forecasting models
At the end of April of each year from 1973 until 1995 a random sample of 250 firms is drawn from eligible domestic common stock issues on NYSE and Amex. Forecasts (statistics are provided for the distribution of the absolute difference between realized and forecasted values of variances. Also reported is the Pearson correlation between forecasts and realizations, and the slope coefficient in the regression of realizations on forecasts. The specification of the different models is described in Appendix C.

Model	s of	casted	ces	$\begin{gathered} 5-\mathrm{th}_{2} \\ \text { percentile } \end{gathered}$	95-th percentile	Maximum
	Mean $\begin{aligned} & \text { Standard } \\ & \text { deviation }\end{aligned}$		Minimum			
(1) Regression-adjusted historical variance	0.0115	0.0050	0.0054	0.0064	0.0210	0.0456
(2) Loadings on 3 factors (market beta, size, book-to-market)	0.0115	0.0043	-0.0003	0.0047	0.0185	0.0248
(3) Dummy variables, 6 categories (3 attributes) (market beta, size, book-to-market)	0.0115	0.0043	0.0036	0.0050	0.0193	0.0220
(4) 3 attributes, dummy variable for zero dividends (market beta, size, dividend yield)	0.0115	0.0051	-0.0068	0.0038	0.0212	0.0259
(5) Dummy variables, 6 categories (4 attributes) (market beta, size, book-to-market, dividend yield, dummy variable for zero dividend yield)	0.0115	0.0048	0.0027	0.0049	0.0211	0.0247
(6) Combination (models 1, 2, 4)	0.0115	0.0044	0.0008	0.0053	0.0194	0.0300

Model	Absolute forecast error 95-th				Correlation	Slope
	Mean	Median	percentile	Maximum		
(1) Regression-adjusted historical variance	0.0062	0.0043	0.0173	0.0913	0.5225	1.1930
(2) Loadings on 3 factors (market beta, size, book-to-market)	0.0065	0.0048	0.0167	0.0871	0.4758	1.1669
(3) Dummy variables, 6 categories (3 attributes) (market beta, size, book-to-market)	0.0066	0.0048	0.0175	0.0870	0.4467	1.1096
(4) 3 attributes, dummy variable for zero i :idends (market beta, size, dividend yield)	0.0064	0.0047	0.0168	0.0878	0.5109	1.0619
(5) Dummy variables, 6 catcgories (4 attributes) (market beta, size, book-to-market, dividend yield, dummy variable for zero dividend yield)	0.0063	0.0045	0.0170	0.0852	0.5066	1.0759
(6) Combination (models 1, 2, 4)	0.0062	0.0045	0.0163	0.0868	0.5447	1.3202

[^0]: ${ }^{1}$ Bawa and Brown (1979) suggest a Bayesian estimator for covariances under a diffuse prior. This estimator differs from equation (1) only by a factor of $\frac{(T+1)(T-1)}{T(T-n-2)}$, where T is the length of the estimation period and n is the number of stocks.

[^1]: ${ }^{2}$ Frost and Savarino (1986), Jobson and Korkie (1981) provide evidence that using the common sample mean return as the expected return for each stock improves the out-of-sample performance of optimized portfolios, relative to assuming that historical average returns will persist.

[^2]: ${ }^{3}$ We also replicated the analysis using Spearman rank correlations between forecasts and realizations. The main findings are generally unaltered.

[^3]: ${ }^{4}$ To help in assessing the magnitude of the forecast errors in panel C, we also generate forecasts from a randomized model. That is, the forecast of the future thirty-six month covariance between two stocks is given by the historical covariance between a randomly selected pair of stocks. This randomized nodel yields a mean absolute error of 0.0030 .
 ${ }^{5}$ Using additional factors based on size or market beta may help less for forecasting correlations than for forecasting covariances on the following account. Specifically, the poor showing of the factor models may be due to offsetting effects in forecasting covariances and variances. In Table 1, for example, return covariances are generally decreasing with firm size, while return variances also decrease with firm size. As a result, what might otherwise be a strong relation between firm size (or other factors) and covariances is danipened when the covariances are scaled by standard deviations.

[^4]: ${ }^{6}$ As in the earlier sections, we consider only domestic common equity issues. Stocks that fall in the bottom twenty percent of market capitalization based on NYSE breakpoints are excluded, as are stocks trading at prices below $\$ 5$.
 ${ }^{7}$ Since our forecasts are based on the past sixty months of returns, and there are 250 stocks, the covariance matrix is singular. Imposing the constraints guarantees a solution to the variance minimization problem.

[^5]: ${ }^{8}$ The composite model is an equally-weighted average of the forecasts from four other models. The component models are: the full covariance model, the 3-factor model, the 9 -factor model and an industry-size model.

[^6]: ${ }^{9}$ A similar interpretation is offered by Green and Hollifield (1992), who provide conditions under which welldiversified portfolios are mean-variance efficient. The empirical evidence in Connor and Korajczyk (1993) also suggests that after the furst factor the marginal explanatory power of additional factors is relatively low.

[^7]: ${ }^{10}$ This may also help explain the tendency to have a relatively large portion of the optimized portfolios invested in utility stocks (SIC code 49). The bulk of negative excess return covariances is clustered in the utility industry, where 47 percent of the pairwise covariances between utility stocks and other stocks is negative.
 ${ }^{11}$ Difficulties in identifying which firms belong to the S\&P 500 , especially in the early years of the sample period, force us to work with a proxy for the index.

[^8]: ${ }^{12}$ For example, when the benchmark is an equally-weighted portfolio of 500 randomly selected stocks, the valueweighted portfolio has a tracking error volatility of 5.59 percent, compared to a tracking error volatility of 2.02 percent under the full covariance model.

[^9]: ${ }^{13}$ See, for example, BARRA (1990). Jagannathan and Wang (1992) also provide evidence on the potential usefulness of firm characteristics such as size to estimate betas.
 ${ }^{14}$ In practice this approach is commonly used among hedge funds and for long-short investment strategies, where short positions are feasible. The underlying idea is that the long and short positions should be closely aligned in terms of attributes such as market risk, size, dividend yield, and industry composition.

[^10]: ${ }^{15}$ The attribute-matching procedure also works well when we use an equally-weighted index of 500 randomly selected stocks as the benchmark. In this case matching on nine attributes generates a tracking error volatility of 1.66 percent, compared to 2.02 percent using the full covariance model.

[^11]: ${ }^{16}$ An alternative procedure would be to form portfolios on the basis of multi-way sorts using several different attributes at the same time. Given the number of attributes and their correlations, however, the resulting portfolios would not contain many stocks and hence their returns would contain a large idiosyncratic component.

[^12]: ${ }^{17}$ The full set of results is available upon request. It is also possible that the noise in estimating the variancecovariance matrix of the factors (Ω in equation 3 of the text) hampers the performance of the factor models. We investigated this possibility by using estimates of the factor variances and covariances that are based on the entire sample period and replicating our forecasting exercises in Table 3 with these estimates. In general our conclusions remain unaffected.

[^13]: ${ }^{18}$ In the previous tables, we estimate covariances based on the most recent sixty months of returns. To get corresponding results, we calibrate the forecasting models in Table B1 by adding an adjustment factor so that the mean of the forecast distribution matches the mean of the actual covariances measured over the sixty months immediately prior to the forecast date. Note that the model estimation and calibration makes no use of information about realizations in the period subsequent to the forecast date.

[^14]: ${ }^{19}$ Recall from Table 3 that when covariances measured over the subsequent twelve months (thirty-six months) are regressed on past historical estimates from the full covariance model, the slope coefficient is 0.4564 (0.4248).
 ${ }^{20}$ In models 2 to 5 , the breakpoints for classifying each stock by an attribute are updated annually, using only NYSE stocks.

[^15]: ${ }^{21}$ An industry may contain relatively few stocks, so the covariance may not be estimated very reliably in such cases. To circumvent this problem, at each forecast date we trim the distribution of estimated industry covariances at the fifth and ninety-fifth percentiles.
 ${ }^{22}$ We also experimented with alternative weighting schemes for the different models. The results are generally very similar.

[^16]: ${ }^{23}$ All models also include a constant term. As in the preceding section, to make the models comparable we calibrate them so that the mean forecast matches the mean variance realized over the sixty months immediately prior to the forecast date. There is nothing in our models that rule out negative forecast values.

[^17]: ${ }^{24}$ An elaboration of this approach would allow the penalties in equation (11) for deviations to be different, depending on the attribute. The penalties may, for example, be related to the variances of the factors associated with each attribute. Given the exploratory nature of our analysis, however, we do not consider these extensions.

[^18]: The full covariance model (model 1) uses the return covariance estimated over the most recent past sixty months prior to portfolio formation as the forecast. Models 2 and 3 are the value-weighted and equally-weighted portfolios, respectively, of all the 250 candidate stocks available at each portfolio formation date. Details on implementing the matching procedure used for models 4 and 5 are given in Appendix D. The value (growth) stock benchmark is a value-weighted portfolio comprising the 250 stocks that are ranked highest (lowest) each year by the ratio of book-to-market value of equity.

