




Introduction

Over time, the share of federal government expenditures tied to age-related programs,

particularly those focusing on the elderly, has grown rapidly.  For example, U.S. spending on

Social Security (OASDI) and Medicare alone has risen from 15 percent of the federal budget in

fiscal year 1966 (the year of Medicare’s introduction) to 35 percent in fiscal year 1998, and is

projected to grow to 44 percent of the federal budget during the next decade (Congressional

Budget Office 1998).  Combined with the changing composition of the U.S. population, this

change in spending composition has led to serious questions about the viability of current fiscal

policy, both in the United States and abroad (e.g., Auerbach et al 1999).

Dealing with the apparent fiscal imbalances associated with aging populations raises

difficult questions about how and when to change policy.  Projected long-term cash-flow

imbalances are so large that significant immediate adjustments appear necessary to avert serious

economic problems.  However, with considerable uncertainty about how serious future cash-flow

imbalances will be, there is also a natural tendency to put off dealing with problems that might

not materialize.  This tendency is magnified by the perception that old-age transfer programs,

particularly Social Security, are a “third rail” of American politics, and a sense that a change

today may make it harder to alter the system tomorrow.  As a result, policy changes have been

relatively infrequent, suggesting that a key feature of the current system is that it does not allow

policy makers to adjust taxes and transfers very frequently, that is, Social Security policy is

“sticky”.

The fundamental question addressed in this paper is how and when to deal with long-term

fiscal imbalances that are at once very significant and very uncertain, given that political

constraints may make frequent changes to the system impossible.  Unlike much current
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discussion that focuses on the institutional features of specific reforms, such as whether to scale

back and/or privatize the Social Security system, our approach is to use simpler and more

stylized models in search of more general conclusions regarding the nature of optimal policy

responses.  We consider policy under different assumptions regarding the flexibility of

government decisions.  To account for the various types of important economic shocks, we

consider three sources of uncertainty: depreciation (which affects the productivity of capital),

technological progress (which affects the productivity of both capital and labor), and life span,

which affects the consumption needs of different generations.

We proceed in two steps.  First, we explore the impact of uncertainty on optimal policy

when policy is free to change each period.  Second, we construct a simulation model to help us

examine the impact of policy stickiness on social welfare and the choice of optimal policy.

Government Policy in an Overlapping Generations Model

Throughout the paper, we analyze policy design using the familiar two-period

overlapping-generations model.  For the sake of simplicity, we assume that there are no bequests,

no heterogeneity within each generation, and no capital market imperfections.  Thus, we abstract

from many of the important issues that arise, for example, in discussions of optimal social

security design, because we wish to focus on issues of timing and intergenerational

redistribution.

Consider an economy in which each generation lives for two periods.  There are three

sources of uncertainty: general productivity, the rate of capital depreciation, and life span, as

represented by the length of life during the second period.  Each generation has a single,

representative individual.
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Initially, we assume that production and preferences are Cobb-Douglas.  Production of

output obeys the expression:

(1) αα −= 1
ttt AKY

where At is the level of labor productivity at date t.  In efficiency units, the wage rate at t is:
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where Ut is the expected utility of the generation born in period t, C1t (C2t) is the consumption of

the younger (older) generation in period t, and βt is the length of second-period life for the older

generation in period t.  The form of second period utility is based on the notion that the period is

really divided into β sub-periods, each with equal weight and consumption.

Consider first the economy’s equilibrium without government.  Utility maximization

(which with homothetic preferences can be considered in terms of efficiency units) yields the

expression for first-period consumption:
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Letting δt be the rate of capital depreciation at date t, we know that:
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Thus, with use made of (1), (2), (3), (5) and (6), the capital transition equation is:
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This provides a complete solution for the economy’s evolution with no government.  Now,

consider the impact of having safe government debt, Bt, and taxes on each generation, T1t and T2t,

such that:

(8) ( ) tttttt TATBB 211 1 −−+=+ ν

where νt is the market-determined safe rate of return.

There are various possible interpretations of the terms T1t and T2t.  One may think of them

as representing the tax and benefit components, respectively, of a public pension scheme.

However, for convenience, we assume that the second-period tax, T2t, is imposed as a

proportional tax on second-period capital income.  Although this appears to impose a distortion,

the government’s optimal policy will turn out to be one that eschews distortionary taxation.

Letting θt be the amount of savings put into government bonds in period t, we may write

the household’s optimization problem at time t as:
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where the superscript n signifies an after-tax return.  The household now chooses how much to

invest in government bonds, θ, as well as how much to consume in the first period, C1.

Combining the two first-order conditions corresponding to these choices yields:
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which corresponds to (5) for the no-government case.  The expression for second-period

consumption corresponding to (6) is:
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where the last substitution follows from (8).  Substituting (10) and (11) into the first line of (7)

yields the modified transition equation for capital:
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Optimal Policy without Constraints

We are now in a position to maximize social welfare through the choice of {Tt, Bt+1} at

date t, subject to expectations at date t.  We assume an additively separable social welfare

function with weight ωt assigned to generation t.  Our objective, therefore, is to maximize1

(13) ( ) 1121 lnln +− ++= ttttttttt VEACCV ωβω
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subject to the transition equation in (12). To do so, we form the Hamiltonian with costate

variable λt associated with (12).

Note that for the government’s problem of maximizing (13), based on (10) and (11) and

subject to the resource constraint described in (12), the initial stock of government debt, Bt is

absent: the stock of debt is irrelevant to the optimal solution.  This makes sense, because national

debt is simply an accounting construct in this model (see, e.g., Auerbach and Kotlikoff 1987, for

further elaboration).  It is possible to increase the initial stock of debt and reduce the transfers to

the elderly in the initial period of optimization without affecting the welfare of the young or the

old or the opportunity set available for the future.  This shift would occur, for example, if we

relabeled some of the taxes and transfers of a social security system as purchases of debt and

payments of interest and principal on that debt.

After some algebra, the first-order conditions with respect to T1t, Bt+1, and Kt yield the

following expressions for the optimal values of C1t and C2t and the optimal evolution of λt:
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These conditions would also follow if we had maximized (13) through the direct choice of {C1t,

C2t}.  This result confirms that, through the choice of taxes and debt, the government can achieve

its first-best solution in a decentralized context.   This equivalence hinges on the government’s

ability to set these instruments freely, i.e., that there is one free instrument for each agent at each
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time.  We reconsider this assumption below.  For now, though, we maintain the assumption that

government has the instrument flexibility needed to implement its optimal policy.

Indeed, as this equivalence does not depend on the Cobb-Douglas assumptions, we can

consider the direct choice of  {C1t, C2t} for other assumptions regarding preferences and

production.  Expression (15) remains the same, although the definition of rt is production-

function-dependent.  For general CES preferences,
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expression (14) is replaced by:
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There are a number of interesting points to make concerning the optimal conditions laid

out in (15) and either (14) or (17).  First, the optimal degree of risk sharing depends on the

relative risk aversion of the young and elderly.  In (16), γ1 and γ2 equal the coefficients of relative

risk aversion of the young and old, respectively.  If γ1 = γ2, then (17) (or (14), for the special case

of γ1 = γ2 = 1) calls for complete risk sharing.2  As discussed by Diamond (1997) and Bohn

(1998), this will generally require government instruments to transfer risk between generations.

As these authors have noted, the desired degree of risk sharing can be accomplished by adjusting

the portfolio of the public pension scheme, for example the share of the Social Security trust

fund that is placed in equity rather than debt.  But there are many alternative ways to achieve the
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same allocation, and there need be no connection whatsoever between trust fund investment

policy and intergenerational risk sharing.

This risk-sharing result holds not only for productivity risks – C1tAt/C2t should be

independent of At and δt when γ1 = γ2 – but also for life-span risk as well: consumption per unit

time of the elderly, C2t/βt, should also bear a fixed ratio to C1tAt, independent of βt.

A second result may be observed by comparing conditions (17a) and (17b) for successive

periods, using (15):
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This is precisely the standard Euler equation that prevails in the absence of the capital income tax

T2t+1, which implies that capital income taxes should be used to spread risk, but not to distort

saving, a familiar result from the dynamic optimal tax literature (e.g. Judd 1989, Chari et al

1994).  This is accomplished by taxing only the excess return to capital.

Another point to make regarding the optimal policy involves the evolution of λt, the

marginal social value of a unit of investment at date t.  The first-order conditions (17a) and (17b)

call for the marginal social value of consumption of young and old to be set equal to this value.

Expression (15) also may be viewed as an Euler equation, relating to the shadow price of capital,

λt.  Using (17a) to rewrite (15) in terms of first-period consumption in successive periods (a

similar expression holds for second-period consumption), we obtain:
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which relates the marginal utility of successive generations’ consumption.  To understand this

result, it is helpful to consider the special case in which rt+1 - δ t+1 is known at date t.  This will be

true if A t+1 and δ t+1 are known at date t.  In this case, (19) calls for the marginal utility of first-

period consumption to follow a random walk, with drift (1+ rt+1 - δ t+1)
t

t

ω
ω 1+

 ≈ rt+1 - δ t+1 - η t+1,

where η t+1 = 1 - 
t

t

ω
ω 1+  is the government’s pure rate of time preference.  This finding is

reminiscent of Barro’s (1979) tax-smoothing result, although here the smoothing of tax burdens

associated with the smoothing of consumption derives from the objective of intergenerational

equity, not the minimization of deadweight loss for an infinite-horizon household.

Even for this special case of a risk-less return rt+1 - δ t+1, consumption itself is not

projected to follow a random walk with drift.  To see why this is so, consider the simple case in

which the drift factor equals zero, so that the optimal policy sets ( ) 1

1
γ−

tt AC  = Et ( ) ][ 1

111
γ−

++ tt AC .

By Jensen’s inequality, it follows that C1tAt < Et (C1t+1At+1).  The logic is straightforward: if we

wish to set the expected value of next period’s marginal utility to equal a particular level, risk

aversion implies that, on average, consumption must exceed its level at this specified marginal

utility – the consumption level in the absence of uncertainty.  Indeed, the greater the fluctuations

in consumption or the degree of relative risk aversion, γ1, the greater this precautionary saving

should be.

This result deserves emphasis: uncertainty about the future should reduce consumption

today, and increased uncertainty or risk aversion should reduce consumption more.  Greater

uncertainty increases the chance of a favorable outcome, in which case the extra saving will

prove to have been unnecessary.  But it will also increase the chance of an unfavorable outcome,
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and risk aversion will lead us weigh the latter effect more heavily than the former.  It does not

matter that it is the risk aversion of future generations, because the government’s social welfare

criterion links the welfare of present generations with those yet unborn.  The result also doesn’t

hinge on whether future generations are expected to be better off than current generations, which

should influence the optimal level of saving but not the impact of added risk on that saving.

The equilibrium path of the economy can be described by the solution to two equations in

K and λ, which we obtain using the optimum conditions (15) and (17).  For the case of Cobb-

Douglas production, we have:
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where we define Zt =
α−1

tA  as the level of total factor productivity.  In general, this nonlinear

system has no analytical solution.  However, we may obtain explicit results for small deviations

from a long-run, deterministic steady state by solving a linearized version of (20).  In this steady

state, the government’s pure rate of time preference, η = 
1+t

t

ω
ω

-1, must be constant, with the rate

of return r*-δ* equal to it.  One important limitation of this analysis is that linearization removes

elements of risk and risk aversion from consideration.  Thus, for simplicity, we set γ1 = γ2 = γ, for

which case γ equals the inverse of the intertemporal elasticity of substitution.  Another apparent

limitation is that we implicitly are ruling out permanent trends in the stochastic variables A, δ,

and β, although one can envision deviations of very long duration.
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This linear version of the model has two characteristic roots, one of which is stable (µ1 <

1) and the other of which is unstable (µ2 > 1).  We obtain the exact solution by imposing two

terminal conditions, the fixed value of the initial capital stock and the requirement that the capital

stock not explode over time.  The result is:
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and

(23) ∗∗∗∗ −= KKY δα

is steady-state output.

Each of the terms in brackets in (22) has a straightforward interpretation.  The first equals

the percent change in the output shock between periods s - 1 and s.  The second equals the

percent change in “consumption need” induced by the life-span shock between periods s - 1 and

s.  The last term measures the impact on desired consumption (through the intertemporal

elasticity parameter γ) of the percent deviation of the discount factor, 1 + r - δ, from its long-run

value.
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The first two factors call for more resources to be carried into periods when resources are

expected to fall or consumption needs increase, while the last factor calls for more saving when

the rate of return to capital is higher.  However, given that the weighted average of all future

expected values of Γs matter, the policy to be followed at date t depends on the anticipated

evolution of these shocks.

For example, suppose that total factor productivity follows the first-order process

Zt = ρZt-1 + (1-ρ)Z* +εt.  Then the contribution of productivity shocks to the last term in (21) is:
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For ρ small (strong mean reversion), the first term matters more; for ρ large (persistent shocks),

the second term is more important.  However, both terms work in the same direction and the net

effect of an increase in ρ is ambiguous.  The derivative of the term in (24) with respect to ρ is

positive if and only if:
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which, for ρ ∈[0,1], is most likely to hold for ρ = 1, and least likely to hold for ρ = 0.  Indeed, if
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, then there is some critical value of ρ, ρ̂ , below which the

term in (24) decreases with ρ and above which it increases.  As µ2 → 1 (which occurs, for

example, as α →1), this interval → (0, ∞) and the existence of ρ̂  more likely.
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This ambiguity is present because an increase in the duration of a productively shock

makes it more valuable to save more, but also less necessary.  The relative importance of these

efforts depends not only on parameters such as γ (a higher value weakening the effect of an

increase in ρ), but also on the value of ρ itself.  A similar ambiguity holds with respect to shocks

to the rate of depreciation, δ.

On the other hand, the impact of life-span shocks is clear: a positive shock to life span

should reduce current capital accumulation.  With more consumption needed in the near term,

less capital should be accumulated. This result may seem counterintuitive, if one thinks of longer

life span as making individuals better off and more able to make transfers to other generations.

But the key here is the impact on the marginal value of consumption; with longer life span, a

generation must spread its resources over a longer period.  We also observe that the more durable

this positive shock, the smaller the reduction in capital accumulation – and the greater the decline

in consumption – that should occur.  This is because future generations are expected to be less

able to provide resources for current ones.  It seems clear that similar results would hold if the

additional value of consumption came from a larger size cohort, that is by an extensive rather

than intensive population shock.

How fast and how much investment should respond to these shocks also depends on the

values taken by the roots (µ1, µ2).  The general expression for these roots is:
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Clearly, µ1 is decreasing in x, and µ2 increasing.  Thus, for x large (see (21)), investment adjusts

quickly (µ1 is small) and doesn’t depend as much on distant future values of the shock term Γs

(µ2 is large).  This will be true, for example, for a low value of the risk aversion coefficient, γ.

At the other extreme, as γ → ∞, µ1 → 1 and µ2 → (1 + r* - δ*).  Higher risk aversion makes

adjustment more costly.  The same effect occurs as α → 1, as the marginal product of capital

becomes independent of the level of the capital stock.  The same effect, it can be shown, also

occurs as the elasticity of substitution between capital and labor rises.  The intuition is that there

is less importance in being at the “wrong” capital stock if deviations in the level of capital have a

minimal impact on its marginal productivity.

It is useful to summarize the results thus far.  First, as others have noted, government

policy should allocate policy risks across each pair of overlapping generations in accordance

with their tolerance for risk.  This can be accomplished in a variety of ways.  Second, policy

should adjust at each date to eliminate expected changes in the marginal value of consumption,

suitably discounted.  Third, with risk aversion and uncertainty, this will generally imply

precautionary fiscal policy that sets aside more than what government expects it will need in the

future.  Fourth, policy should respond differently to productivity shocks and demographic

shocks.  Like increases in life expectancy, negative productivity shocks require a reduction in

investment and a reduction in current consumption, with the latter growing with the expected

duration of the shock.  However, negative productivity shocks also discourage capital

accumulation by making that accumulation less productive, and the net impact on investment of

a shock’s persistence is no longer clear.  Finally, the speed of adjustment should rise with a fall

in the degree of risk aversion, or with a decline in the capital share of output or a fall in the

elasticity of substitution between capital and labor.
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Limits on Policy Changes

Thus far, we have considered government policy when there is sufficient instrument

flexibility for the government to control consumption directly.  In a more realistic setting, this is

unlikely to be the case, both because there are more “targets” (such as the consumption levels of

different groups within each generation) and fewer “instruments”.  Once one considers these

more realistic cases, it is again necessary to analyze the effects of fiscal instruments explicitly, as

consumption levels now must be chosen from a constrained set.

One complication that may arise is that it may not be possible to change government’s

instruments in every period.  This may reflect political difficulties, or implicitly the large fixed

costs associated with major policy changes.  To be concrete, let us suppose that the tax rates T1

and T2 cannot be changed in successive periods.  Given that each period in an overlapping

generations model corresponds to roughly 30 years, this restriction corresponds to the notion that

major changes in, say, the Social Security or Medicare system may be possible only once every

few decades.

With this restriction, the government’s problem now has an additional state variable, say

dt, which equals 0 if T1t-1 = T1t-2 and T2t-1 = T2t-2 and 1 otherwise.  Letting 0
tV ( 1

tV ) be the

government’s objective function in period t if dt = 0 (1), we may express these functions (for the

case of Cobb-Douglas preferences) as:

(28) ( ) ( )[ ]11
1121
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( ) ( )  lnln 0
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1
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where itC  is the value of Cit chosen when {T1t, T2t} equals {T1t-1, T2t-1}.  Note that, with this

restriction, the initial level of debt will generally matter.  This is evident from inspection of

expression (11), for with T2t fixed, the level of consumption by the elderly C2t varies with Bt.

This problem can only be solved numerically.  We use the following approach, starting

with some assumed terminal period, say M.  In period M, the world ends and the government

must pay off its debt.  To do so, it must be able to choose {T1M, T2M}, which means that it cannot

have chosen {T1M-1, T2M-1}.  The choice of  {T1M, T2M} is made by maximizing the welfare of that

period’s consumption by young and old, for there is no future.  As {T1M-1, T2M-1} may not be

chosen, this tax vector is set equal to {T1M-2, T2M-2}.  Knowing that it will not choose to vary

taxes in period M-1, the government faces no cost in varying taxes in period M-2 from their

previous values; it will vary taxes in period M-2 if it can – that is, if it has not varied them in

period M-3.  Thus, for each of periods M, M-1, and M-2, the government’s decision of whether to

vary taxes is a trivial one.  For periods M-3 and earlier, though, the decision must be evaluated

using expression (28), comparing the option value of waiting to adjust taxes, ( ) 1
1

0
1 ++ − ttt VVE , with

the current-period cost of doing so, [ ] ( ) ( )[ ]ttttttttt ACACCC 11221 lnlnlnln −+−− ωβω .  As we go

back to earlier and earlier periods, we derive the optimal values {T1t, T2t} as functions of the state

variables, which include the capital stock Kt and all relevant information regarding the stochastic

variables At, δt, and βt.  To obtain infinite-horizon policy rules, we would need to keep going

back in time, lengthening the government’s planning horizon until these functions converged

(i.e., ceased to depend on t).

To keep the state space manageable, we limit our analysis to cases in which the

production terms At and δt are deterministic and constant, normalized to 1 and 0 respectively, and

life span, βt, is governed by a first-order process, βt = ρβt-1 + (1-ρ)β* + εt, with β* = 1.  This
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means that only the current value of β enters as a state variable at date t.  Also, because there is

no productivity risk, the before-tax return to capital in period t is known at the beginning of

period t.  Hence, capital and government debt are perfect substitutes and the return to debt, νt

(which is needed to calculate Bt+1 when taxes are fixed in period t) equals the return to capital, rt.

Table 1 presents the results of simulations of this model for different initial values of

second-period life span, β, and the serial correlation of the process governing life span, ρ.  The

innovations of this process, ε, are assumed to be drawn from a uniform distribution over the

interval [-.1, .1].  Also, the government’s discount rate, r*, is set equal to 2 and the initial capital

stock is set to its steady-state value in the linearized model.3  The initial stock of debt is set to

zero.  Taxes on young and old, T1 and T2, from the “previous” period, which are state variables

because of the government’s policy constraints, are both set equal to .1.  We assume that policy

was not adjusted in the previous period, so that government does have the option of moving in

the initial period.

Because the amount of time required for each simulation rises explosively as the

government’s horizon lengthens, we present results for a four-period horizon, i.e., for period M-3

as defined above.  As discussed above, this is the first horizon (from the end) for which the

government’s decision regarding whether to adjust policy is not a trivial one.  Also, given the

size of the discount factor and the implicit length of each period, this horizon should be

sufficiently long to provide a general picture of the results.  We solve the model using a grid

search technique.4  For each simulation, the table presents the value achieved by the value

function at the optimal policy, and the corresponding values of consumption and taxes for young

and old and debt and capital carried into the next period.
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For the sake of comparison, we also present simulations for the case in which there are no

restrictions on policy changes.  The top panel of the table, labeled “unconstrained,” presents the

results of these simulations, while the simulations for the model with constraints appear in the

table’s lower panel.

Let us consider first the results for the unconstrained model.  As discussed earlier, the

government’s decision in this case simplifies to a two-step problem: it allocates consumption to

each generation in a given period to satisfy the ratio implied by combining expressions (14a) and

(14b), and then chooses the capital stock to spread resources over time to satisfy expression (15).

This implies that C2/C1 = (1+r*)β, which equals 3β for our assumption that r* = 2, as the

simulations in the top panel confirm approximately.5  The unconstrained results are also

consistent with the prediction from the linearized model regarding the impact of ρ on the

response of consumption to a shock to current life span, β.  Recall that as the shock to β is

expected to be more permanent (ρ is large), we can less afford an increase in the current

consumption of the elderly.  Thus, consumption of the elderly should increase less, and saving

should be higher, when ρ is high.  Indeed, this is quite evident when we compare the changes in

C2 as β increases for ρ = .1 and ρ = .9.  In fact, saving actually rises with β for the ρ = .9 case,

which may reflect the additional complications of the model over its linearized version, or the

fact that our earlier results held for the infinite-horizon case.

Another result worth noting is that, for β = 1, the capital stock is the same when ρ = .9

and when ρ = .1.  To analyze this result, note first that when βt = 1, βt+1 = 1 + εt+1, so that

the distribution of βt+1 is independent of ρ.  The distribution of subsequent values of β will also

have a mean of 1, but will have greater variance when ρ = .9, because shocks will persist.  Thus,

our finding is that increased future variance has no impact on capital accumulation, a result that
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might seem counterintuitive.  It may be shown, however, at least in the two-period version of this

model with logarithmic utility, that a simple increase in the variance of β is neutral with respect

to capital accumulation.  In our simulations, the outcome is more complicated because factor

prices are also changing with β, as a result of variations in capital accumulation.  Our result

suggests that these variations have essentially no net impact.

Turning now to the simulations for the constrained model, we find that in all cases the

government chooses to adjust tax policy in the initial period, given the assumed values of T1 and

T2 from the “previous” period (0.1).  Because it then cannot adjust policy in the next period, and

must adjust policy in the final period, this means that the government’s initial policy must stay in

place for three periods.

As one would expect, anticipating so little flexibility leads the government to sacrifice

current consumption to provide for the future.  In percentage terms, the reduction in C1 is larger

than that in C2, perhaps reflecting the fact that the young may be expected to “recover” part of

the government’s precautionary saving when they are old.  The reduction in C2 is stronger for

higher values of ρ and higher values of β.  We conjecture that the first result derives from the

higher variance of future shocks, to which policy may not be able to respond.  The second result

may be attributable in part to the fact that future generations are, in general, expected to be worse

off when the current value of β is high.  Thus, in each case, the welfare cost of having the

“wrong” fiscal policy will be greater (because the errors are greater or their costs are higher), and

this leads the government to exact a greater sacrifice from the current elderly.

There may also be a more subtle reason why there is less of a reduction in C2 when β is

small.  When β is less than 1, it is expected to rise in the future.  With policy set each period, we

would then expect to have to raise the consumption of the elderly in the future, presumably by
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reducing their taxes.   However, with policy variables constrained at their current values, this

adjustment will not be possible.  It may be necessary, then, to reduce the taxes on the elderly

today, forcing more of the precautionary saving adjustment onto the young.  This effect would be

most important for low values of ρ, when we are more certain that life expectancy will revert to

“normal” and rise in the near future.  Indeed, it is most observable in the table for the case of ρ =

.1 and β = .7.  For this case, the consumption of the elderly does not drop at all between the

unconstrained and constrained case – all of the precautionary saving is being forced on the

young.  This additional effect would be absent, of course, if our transfer to the elderly were fixed

not in total value but per unit of time spent in old age, as indeed old-age pension annuities are.

This factor helps explain why the pattern of changes in C1 is not monotonic with respect

to increases in ρ and β.  Still, taking the changes in C1 and C2 together, the impact on

precautionary saving – the difference in capital between the unconstrained and constrained

policy scenarios – is higher and rises more quickly with β when ρ = .9 than when ρ = .1,

consistent with the initial intuition given when discussing C2.

At the bottom of Table 1, we present estimates of the range of inaction in the policy-

constrained version of the model, for the cases of β = 1 and ρ = .9 and .1, respectively.  In

parentheses are the values of T1 and T2 that define the boundary of the set over which the

government would choose inaction, if the other tax happened to be set equal to its optimal

current-period value.

For example, for ρ = .9, if the lagged value of T2 happened to equal -.075, its optimal

value in the current decision period (in bold in the table), then government would choose

inaction for T1 ∈ [.03,.24], bracketing the optimal value (also in bold) of .200.  Setting T1 at its

optimal value of .200, we find an inaction range for T2 of [-.20,-.04].  These ranges are quite
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broad relative to those for ρ = .1.6  This difference suggests that there is much greater value in

waiting to adjust policy if next period’s information is more “permanent.”  That is, when ρ = .9,

the shock in the next period, M-2, will also have an important impact on life span in periods M-1

and M.  Thus, being able to adjust policy in period M-2 has greater value than it would if the

shock in period M-2 were more temporary, as it is when ρ = .1.

Another interesting pattern in these results is that the optimal values of T1 and T2 each lie

much closer to the upper boundary of their respective inaction ranges than to the lower boundary.

We may infer from this that suboptimal current tax rates are much more costly if they are too

high than if they are too low.  The logic is straightforward: mistakes in the first direction lead to

taxes being too high, and consumption too low, for only one set of generations (those currently

alive) while mistakes in the other direction lead to taxes being too high, and consumption too

low, for a larger number of generations.  Being able to spread a given burden over more

generations reduces its overall cost, given the concavity of utility and hence the social welfare

criterion.

This suggests an apparent paradox, that through its decisions of whether to act, the

government will tend to sustain taxes that are too low and cut taxes that are too high, leading to a

bias toward taxes that are too low.  However, it is important to recall that, if it acts, the

government tends to choose taxes that are higher than in the unconstrained case.  Thus, taking

into account both periods of action and periods of inaction, it does not follow that taxes will be

lower, on average, in the constrained world than in the unconstrained world.  While our intuition

is that taxes will be higher, on average, this is an open question that we hope to resolve in future

work.  We also hope to explore other questions involving inaction and uncertainty, such as the

impact of an expectation that uncertainty will be resolved (i.e., an expected decline in the
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variance of the innovations ε.)  In addition, we are exploring how much of the large gap in social

welfare between the constrained and unconstrained models can be closed through the use of

devices that make political action less necessary, such as indexation of policy variables to the

expected lifetime of the elderly.

Table 2 presents the results of the same set of simulations, for the case in which the

discount factor, r*, is set equal to 1.  For the unconstrained policy simulations, the use of a lower

discount rate makes higher capital accumulation optimal.  The effects of imposing policy

constraints are qualitatively in this table similar to those in Table 1.  In particular, the capital

stocks under the constrained runs are generally higher than for the comparable unconstrained

simulations.  However, the increases are much smaller for this lower value of r*, presumably

because the higher rate of initial capital accumulation leaves greater “margin for error.”   Indeed,

for β = .7 and ρ = .1, the capital stock actually falls when the constraint is imposed.  The reason

appears to be that discussed above, that the only way to provide a reasonable level of

consumption for the longer-lived future elderly is to “overfeed” today’s short-lived elderly.

Thus, today’s young have to bear all (in fact, more than all) of the reduction in consumption

induced by policy constraints.  As discussed above, this phenomenon would be absent if the

policy constraint applied to an old-age annuity rate rather than the total old-age payment.

Conclusions

One cannot draw universal conclusions from a model as simple as the one used in this

paper.  However, our results illustrate a number of points relevant to current discussion of long-

run policy making.  We emphasize two of these points here.

First, it is important to concentrate on fundamental economic effects.  The impact of

policies ultimately occurs through their impact on distribution and incentives.  Thus, we learn
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more by focusing on how policy changes alter distribution and incentives, and not being diverted

by superficial distinctions such as whether the policy change takes the form of public pension

reform or a shift to a private pension program, or whether the policy change occurs within the

pension area or some other part of the government budget.

Second, in itself, the presence of uncertainty about the future offers little apparent

justification for waiting to act in response to an anticipated fiscal imbalance.  With a risk-averse

population, the costs of future outcomes even worse than those expected outweigh the benefits of

outcomes better than expected.  This suggests not only that action should not be delayed, but

further that action should actually be accelerated – that some precautionary saving may be called

for, in addition to whatever changes are needed to respond to an expected fiscal imbalance.  The

added realism of restrictions on the frequency of policy changes alters this result in two

offsetting ways.  The prospect of being unable to set policy in the future occasions even more

precautionary saving today, if the government acts.  However, the government may also choose

not to exercise its valuable option to set policy and, because the impact of its policies on the

elderly cannot be reversed in the future, it is more likely to choose inaction when fiscal

tightening is called for.  Thus, the optimal policy response over time might best be characterized

by great caution in general, but punctuated by occasional periods of apparent irresponsibility.

Much research remains to be done on this issue.
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Endnotes

1 There is an additional term in the objective function, -ωt-1 ln βt, but this doesn’t vary with

government policy.

2 Recall that C1t is measured in efficiency units, so C1t At is per capita consumption by the young.

3 Remember that each period in this life-cycle model represents a generation of perhaps 30 years,

so a discount factor of 2 corresponds to a compounded annual discount factor of around 3.7

percent.

4 We chose this technique after attempts at using derivative-based methods failed to converge.

5 This relationship holds exactly when we use a high number of potential policy variables in the

grid search, but in this case, the computer program can take several days to find the optimal

policy.

6 Indeed, the grid size of .01 being used to estimate the inaction range is really too large for this

problem, for the boundaries of the two inaction ranges are at successive points on the grid.



Table 1.  Optimal Policy Rules: Four-Period Horizon

(r* =  2)

Unconstrained

ρ 0.9 0.9 0.9 0.1 0.1 0.1
β 0.7 1 1.3 0.7 1 1.3

V -2.136 -2.570 -3.188 -2.467 -2.815 -3.180
C1 .149 .118 .078 .140 .113 .096
C2 .304 .320 .319 .280 .324 .348
K .058 .073 .112 .091 .073 .066
T1 .060 .080 .136 .036 .084 .116
T2 -.104 -.120 -.120 -.080 -.124 -.148
Debt .044 .040 -.016 .044 .040 .032

Constrained

ρ 0.9 0.9 0.9 0.1 0.1 0.1
β 0.7 1 1.3 0.7 1 1.3

V -2.343 -3.330 -4.187 -2.570 -2.941 -3.291
C1 .111 .054 .039 .089 .072 .059
C2 .287 .275 .258 .280 .315 .338
K .116 .182 .213 .141 .124 .113
T1 .113 .200 .220 .133 .167 .190
T2 -.088 -.075 -.058 -.080 -.115 -.138
Debt -.025 -.125 -.162 -.053 -.052 -.052

Inaction Range:
T1 (.03,.24) (.16,.17)
T2 (-.20,-.04) (-.12,-.11)



Table 2.  Optimal Policy Rules: Four-Period Horizon

(r* =  1)

Unconstrained

ρ 0.9 0.9 0.9 0.1 0.1 0.1
β 0.7 1 1.3 0.7 1 1.3

V -2.491 -2.652 -2.791 -2.865 -3.147 -3.457
C1 .258 .220 .189 .235 .199 .177
C2 .358 .434 .486 .330 .402 .450
K .160 .122 .101 .211 .175 .149
T1 -.016 -.012 -.004 -.044 .020 .060
T2 0.00 -.076 -.128 .028 -.044 -.092
Debt .016 .088 .132 .050 .024 .032

Constrained

ρ 0.9 0.9 0.9 0.1 0.1 0.1
β 0.7 1 1.3 0.7 1 1.3

V -2.721 -3.230 -3.691 -2.887 -3.200 -3.480
C1 .244 .187 .156 .219 .191 .164
C2 .351 .401 .423 .354 .401 .443
K .181 .188 .197 .203 .185 .169
T1 -.015 .035 .056 -.015 .035 .085
T2 .008 -.043 -.065 .004 -.043 -.085
Debt .008 .008 .008 .011 .008 .000


